lnu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Multiple Osmotic Stress Responses in Acidihalobacter prosperus Result in Tolerance to Chloride Ions
Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science. (Ctr Ecol & Evolut Microbial Model Syst, EEMiS)ORCID iD: 0000-0002-9622-3318
Univ Andres Bello, Chile ; Fdn Ciencia & Vida, Chile.
Univ Andres Bello, Chile ; Fdn Ciencia & Vida, Chile.
Curtin Univ, Australia.
Show others and affiliations
2017 (English)In: Frontiers in Microbiology, ISSN 1664-302X, E-ISSN 1664-302X, Vol. 7, 2132Article in journal (Refereed) Published
Abstract [en]

Extremely acidophilic microorganisms (pH optima for growth of <= 3) are utilized for the extraction of metals from sulfide minerals in the industrial biotechnology of biomining. A long term goal for biomining has been development of microbial consortia able to withstand increased chloride concentrations for use in regions where freshwater is scarce. However, when challenged by elevated salt, acidophiles experience both osmotic stress and an acidification of the cytoplasm due to a collapse of the inside positive membrane potential, leading to an influx of protons. In this study, we tested the ability of the halotolerant acidophile Acidihalobacter prosperus to grow and catalyze sulfide mineral dissolution in elevated concentrations of salt and identified chloride tolerance mechanisms in Ac. prosperus as well as the chloride susceptible species, Acidithiobacillus ferrooxidans. Ac. prosperus had optimum iron oxidation at 20 g L-1 NaCl while At. ferrooxidans iron oxidation was inhibited in the presence of 6 g L-1 NaCl. The tolerance to chloride in Ac. prosperus was consistent with electron microscopy, determination of cell viability, and bioleaching capability. The Ac. prosperus proteomic response to elevated chloride concentrations included the production of osmotic stress regulators that potentially induced production of the compatible solute, ectoine uptake protein, and increased iron oxidation resulting in heightened electron flow to drive proton export by the F0F1 ATPase. In contrast, At. ferrooxidans responded to low levels of Cl- with a generalized stress response, decreased iron oxidation, and an increase in central carbon metabolism. One potential adaptation to high chloride in the Ac. prosperus Rus protein involved in ferrous iron oxidation was an increase in the negativity of the surface potential of Rus Form I (and Form II) that could help explain how it can be active under elevated chloride concentrations. These data have been used to create a model of chloride tolerance in the salt tolerant and susceptible species Ac. prosperus and At. ferrooxidans, respectively.

Place, publisher, year, edition, pages
2017. Vol. 7, 2132
Keyword [en]
salt, acidophile, biomining, bioleaching, proteomics, pyrite, chalcopyrite, environmental stress
National Category
Microbiology
Research subject
Ecology, Microbiology
Identifiers
URN: urn:nbn:se:lnu:diva-60252DOI: 10.3389/fmicb.2016.02132ISI: 000391154500001OAI: oai:DiVA.org:lnu-60252DiVA: diva2:1068933
Available from: 2017-01-26 Created: 2017-01-26 Last updated: 2017-11-29Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Authority records BETA

Dopson, Mark

Search in DiVA

By author/editor
Dopson, Mark
By organisation
Department of Biology and Environmental Science
In the same journal
Frontiers in Microbiology
Microbiology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 100 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf