lnu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Modelling Vessel Traffic Service to understand resilience in everyday operations
World Maritime University . (Maritime Risk and System Safety)ORCID iD: 0000-0001-5356-5126
University of Southern Denmark, Denmark. (Center for Kvalitet)
Chalmers University of Technology. (Maritime Human Factors)
2015 (English)In: Reliability Engineering & System Safety, ISSN 0951-8320, E-ISSN 1879-0836, Vol. 141, 10-21 p.Article in journal (Refereed) Published
Abstract [en]

Vessel Traffic Service (VTS) is a service to promote traffic fluency and safety in the entrance to ports. This article׳s purpose has been to explore everyday operations of the VTS system to gain insights in how it contributes to safe and efficient traffic movements. Interviews, focus groups and an observation have been conducted to collect data about everyday operations, as well as to grasp how the VTS system adapts to changing operational conditions. The results show that work within the VTS domain is highly complex and that the two systems modelled realise their services vastly differently, which in turn affects the systems׳ ability to monitor, respond and anticipate. This is of great importance to consider whenever changes are planned and implemented within the VTS domain. Only if everyday operations are properly analysed and understood, it can be estimated how alterations to technology and organisation will affect the overall system performance.

Place, publisher, year, edition, pages
2015. Vol. 141, 10-21 p.
Keyword [en]
Vessel Traffic Service (VTS), Functional Resonance Analysis Method (FRAM), Resilience engineering, System design
National Category
Production Engineering, Human Work Science and Ergonomics
Research subject
Technology (byts ev till Engineering)
Identifiers
URN: urn:nbn:se:lnu:diva-60508DOI: 10.1016/j.ress.2015.03.020OAI: oai:DiVA.org:lnu-60508DiVA: diva2:1071656
Available from: 2017-02-06 Created: 2017-02-06 Last updated: 2017-03-27Bibliographically approved
In thesis
1. Vessel Traffic Service (VTS) : a maritime information service or traffic control system?: understanding everyday performance and resilience in a socio-technical system under change
Open this publication in new window or tab >>Vessel Traffic Service (VTS) : a maritime information service or traffic control system?: understanding everyday performance and resilience in a socio-technical system under change
2014 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Vessel Traffic Service (VTS) is a shore-side maritime assistance service that supports bridge teams in their safe navigation of port approaches and other areas that present navigational difficulties. The VTS is implemented in national waters and provides vessels with information through transmissions and broadcasts on Very High Frequency (VHF) radio. With a continued growth in the number, size and cargo volumes of merchant vessels, the role of the VTS has recently become a matter of discussion, and it has been argued that changes, such as implementing an aviation-like control system, would be of an enormous benefit for stakeholders and guarantee safe and efficient traffic movements in the future. The complexity of processes in safety-critical domains, such as maritime traffic management, is increasing due to continuing technical, organisational and environmental developments. The VTS is currently undergoing drastic changes, primarily driven by strategies and projects focusing on increasing the overall efficiency of the maritime transportation system through advanced technology. To reduce the risk of unforeseen consequences, it is important to study and understand the service and its contribution to traffic management before changes are implemented. The purpose of this thesis has been to increase the overall understanding of everyday performance of the VTS system and identify ways of modelling the performance of the service, as a contribution to the ongoing debate on the future needs of maritime traffic management. The VTS is described as socio-technical system that controls and manages maritime traffic in port approaches and other areas that pose navigational difficulties for bridge teams. Field data collected through semi-structured interviews, observations and focus groups have been analysed with the aid of concepts derived from Cognitive Systems Engineering (CSE) and Resilience Engineering (RE) to understand how the VTS actively contributes to safety through monitoring, responding to and anticipating changes in traffic patterns in the VTS area. The data have also been used to model performance variability in everyday operation with the aid of the Functional Resonance Analysis Method (FRAM). Performance variability is necessary for a system to be adaptive, and is therefore essential for the system’s functioning. By using the FRAM, a new angle of the VTS system has been explored to understand how variability in its functional units affects the overall system performance. The thesis demonstrates the importance of understanding how performance in a socio-technical system can vary and the consequences this may have. The FRAM can be used to analyse the functional design of a socio-technical system, and therefore help to identify and assess ways in which performance variability can be monitored and managed. By understanding the functional design of the VTS system and the complexity of everyday operation, stakeholders will be able to identify advantages and disadvantages of current system design and use this to consider how future demands can best be met.

Place, publisher, year, edition, pages
Göteborg: Chalmers tekniska högskola, 2014
Series
Doktorsavhandlingar vid Chalmers tekniska högskola. Ny serie, ISSN 0346-718X ; 3729
Keyword
Vessel Traffic Service, Traffic Management, Cognitive Systems Engineering, Resilience Engineering, Performance Variability, Functional Resonance Analysis Method (FRAM)
National Category
Production Engineering, Human Work Science and Ergonomics Transport Systems and Logistics
Research subject
Technology (byts ev till Engineering)
Identifiers
urn:nbn:se:lnu:diva-61870 (URN)978-91-7597-048-6 (ISBN)
Supervisors
Available from: 2017-03-28 Created: 2017-03-27 Last updated: 2017-03-28Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Praetorius, Gesa
In the same journal
Reliability Engineering & System Safety
Production Engineering, Human Work Science and Ergonomics

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 46 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf