lnu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
P(φ)1-process for the spin boson model and functional central limit theorem for the associated additive functionals
University of Tunis El Manar, Tunisia.
Kyushu University, Japan.
Loughborough University, UK.
Linnaeus University, Faculty of Technology, Department of Mathematics. University of Tunis El Manar, Tunisia.
Show others and affiliations
2017 (English)In: Stochastics: An International Journal of Probablitiy and Stochastic Processes, ISSN 1744-2508, E-ISSN 1744-2516Article in journal (Refereed) Epub ahead of print
Abstract [en]

We construct a random process with stationary increments associated to the hamiltonianof the spin boson model consisting of a component describing the spin and a componentgiven by a Schwartz distribution-valued Ornstein-Uhlenbeck process describing the bosoneld. As consequence, We use a functional integral representation of the Hamiltonian toprove a functional central limit theorem for additive functionals and we derive explicitexpressions of the diusion constant.

Place, publisher, year, edition, pages
2017.
Keyword [en]
spin-boson model, ground states, functional central limit theorems
National Category
Mathematics
Research subject
Natural Science, Mathematics
Identifiers
URN: urn:nbn:se:lnu:diva-61917DOI: 10.1080/17442508.2017.1371177OAI: oai:DiVA.org:lnu-61917DiVA: diva2:1085113
Available from: 2017-03-28 Created: 2017-03-28 Last updated: 2017-09-14

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Majid, Achref
By organisation
Department of Mathematics
In the same journal
Stochastics: An International Journal of Probablitiy and Stochastic Processes
Mathematics

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 24 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf