In ferromagnets, magnons may condense into a single quantum state. Analogous to superconductors,this quantum state may support transport without dissipation. Recent works suggest that longitudinal spintransport through a thin-film ferromagnet is an example of spin superfluidity. Although intriguing, thistantalizing picture ignores long-range dipole interactions; here, we demonstrate that such interactionsdramatically affect spin transport. In single-film ferromagnets,“spin superfluidity”only exists at lengthscales (a few hundred nanometers in yttrium iron garnet) somewhat larger than the exchange length. Overlonger distances, dipolar interactions destroy spin superfluidity. Nevertheless, we predict the reemergenceof spin superfluidity in trilayer ferromagnet-normal metal-ferromagnet films that are∼1μm in size. Suchsystems also exhibit other types of long-range spin transport in samples that are several micrometers in size.