lnu.sePublications

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt212",{id:"formSmash:upper:j_idt212",widgetVar:"widget_formSmash_upper_j_idt212",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt214_j_idt216",{id:"formSmash:upper:j_idt214:j_idt216",widgetVar:"widget_formSmash_upper_j_idt214_j_idt216",target:"formSmash:upper:j_idt214:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Geometric location of periodic points of 2-ramified power seriesPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
2018 (English)In: Journal of Mathematical Analysis and Applications, ISSN 0022-247X, E-ISSN 1096-0813, Vol. 465, no 2, p. 762-794Article in journal (Refereed) Published
##### Abstract [en]

##### Place, publisher, year, edition, pages

2018. Vol. 465, no 2, p. 762-794
##### National Category

Geometry
##### Research subject

Mathematics, Mathematics
##### Identifiers

URN: urn:nbn:se:lnu:diva-64440DOI: 10.1016/j.jmaa.2018.05.009OAI: oai:DiVA.org:lnu-64440DiVA, id: diva2:1099114
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt547",{id:"formSmash:j_idt547",widgetVar:"widget_formSmash_j_idt547",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt553",{id:"formSmash:j_idt553",widgetVar:"widget_formSmash_j_idt553",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt559",{id:"formSmash:j_idt559",widgetVar:"widget_formSmash_j_idt559",multiple:true}); Available from: 2017-05-29 Created: 2017-05-29 Last updated: 2018-09-10Bibliographically approved
##### In thesis

In this paper we study the geometric location of periodic points of power series defined over fields of prime characteristic *p*. More specifically, we find a lower bound for the absolute value of all periodic points in the open unit disk of minimal period p^{n} of 2-ramified power series. We prove that this bound is optimal for a large class of power series. Our main technical result is a computation of the first significant terms of the pnth iterate of 2-ramified power series. As a by-product we obtain a self-contained proof of the characterization of 2-ramified power series.

1. Ramification numbers and periodic points in arithmetic dynamical systems$(function(){PrimeFaces.cw("OverlayPanel","overlay1175046",{id:"formSmash:j_idt851:0:j_idt858",widgetVar:"overlay1175046",target:"formSmash:j_idt851:0:parentLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

doi
urn-nbn$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_j_idt1353",{id:"formSmash:j_idt1353",widgetVar:"widget_formSmash_j_idt1353",showEffect:"fade",hideEffect:"fade",showDelay:500,hideDelay:300,target:"formSmash:altmetricDiv"});});

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1412",{id:"formSmash:lower:j_idt1412",widgetVar:"widget_formSmash_lower_j_idt1412",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1413_j_idt1415",{id:"formSmash:lower:j_idt1413:j_idt1415",widgetVar:"widget_formSmash_lower_j_idt1413_j_idt1415",target:"formSmash:lower:j_idt1413:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});