lnu.sePublications

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt176",{id:"formSmash:upper:j_idt176",widgetVar:"widget_formSmash_upper_j_idt176",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt184_j_idt188",{id:"formSmash:upper:j_idt184:j_idt188",widgetVar:"widget_formSmash_upper_j_idt184_j_idt188",target:"formSmash:upper:j_idt184:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Transport through a network of capillaries from ultrametric diffusion equation with quadratic nonlinearityPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
2017 (English)In: Russian journal of mathematical physics, ISSN 1061-9208, E-ISSN 1555-6638, Vol. 24, no 4, p. 505-516Article in journal (Refereed) Published
##### Abstract [en]

##### Place, publisher, year, edition, pages

MAIK NAUKA/INTERPERIODICA/SPRINGER , 2017. Vol. 24, no 4, p. 505-516
##### National Category

Mathematics
##### Research subject

Natural Science, Mathematics
##### Identifiers

URN: urn:nbn:se:lnu:diva-69754DOI: 10.1134/S1061920817040094ISI: 000417289900009Scopus ID: 2-s2.0-85037332199OAI: oai:DiVA.org:lnu-69754DiVA, id: diva2:1173371
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt691",{id:"formSmash:j_idt691",widgetVar:"widget_formSmash_j_idt691",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt697",{id:"formSmash:j_idt697",widgetVar:"widget_formSmash_j_idt697",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt703",{id:"formSmash:j_idt703",widgetVar:"widget_formSmash_j_idt703",multiple:true}); Available from: 2018-01-12 Created: 2018-01-12 Last updated: 2019-08-29Bibliographically approved

This paper is about a novel mathematical framework to model transport (of, e.g., fluid or gas) through networks of capillaries. This framework takes into account the tree structure of the networks of capillaries. (Roughly speaking, we use the tree-like system of coordinates.) As is well known, tree-geometry can be topologically described as the geometry of an ultrametric space, i.e., a metric space in which the metric satisfies the strong triangle inequality: in each triangle, the third side is less than or equal to the maximum of two other sides. Thus transport (e.g., of oil or emulsion of oil and water in porous media, or blood and air in biological organisms) through networks of capillaries can be mathematically modelled as ultrametric diffusion. Such modelling was performed in a series of recently published papers of the authors. However, the process of transport through capillaries can be only approximately described by the linear diffusion, because the concentration of, e.g., oil droplets, in a capillary can essentially modify the dynamics. Therefore nonlinear dynamical equations provide a more adequate model of transport in a network of capillaries. We consider a nonlinear ultrametric diffusion equation with quadratic nonlinearity - to model transport in such a network. Here, as in the linear case, we apply the theory of ultrametric wavelets. The paper also contains a simple introduction to theory of ultrametric spaces and analysis on them.

doi
urn-nbn$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_j_idt1996",{id:"formSmash:j_idt1996",widgetVar:"widget_formSmash_j_idt1996",showEffect:"fade",hideEffect:"fade",showDelay:500,hideDelay:300,target:"formSmash:altmetricDiv"});});

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt2050",{id:"formSmash:lower:j_idt2050",widgetVar:"widget_formSmash_lower_j_idt2050",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt2051_j_idt2053",{id:"formSmash:lower:j_idt2051:j_idt2053",widgetVar:"widget_formSmash_lower_j_idt2051_j_idt2053",target:"formSmash:lower:j_idt2051:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});