lnu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Speciation of Cu, Zn and Cr in Excavated Fine Fraction of Waste at two Landfills
Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science. (ESEG)ORCID iD: 0000-0001-8906-9271
Show others and affiliations
2018 (English)In: Iranica Journal of Energy and Environment (IJEE), ISSN 2079-2115, E-ISSN 2079-2123, Vol. 9, no 2, p. 86-90Article in journal (Refereed) Published
Abstract [en]

Mining landfills and open dumpsites is associated with (40-70% by mass) fine fraction of particle sizes less than 20 or 10 mm. Soil and trace elements of considerable concentrations typically dominate the composition of this fraction. In the present paper, a modified three steps sequential extraction procedure was used to fractionate Cu, Zn and Cr in the fine fraction of waste sampled from Högbytorp (Sweden) and Torma (Estonia) landfills. The results showed that the major concentrations of Cu (98.8 and 98.6 wt%) and Cr (98.5% and 98.4 wt %) in fines from Högbytorp and Torma landfills, respectively. These data were found associated to the residual fraction. Noticeable concentrations of Cu and Cr were also found associated within the water -soluble fraction, which could be regarded as a potential risk. The Zn displayed different behavior by distributing in all the sequential extraction fractions in the fine fractions from the two landfills. Specifying the metals content using this method is essential to explore the valorization as well as the potential environmental risks by these fines fractions.

Place, publisher, year, edition, pages
2018. Vol. 9, no 2, p. 86-90
Keywords [en]
Speciation; fractionation; sequential extraction; metals; fine fraction
National Category
Environmental Sciences
Research subject
Natural Science, Environmental Science
Identifiers
URN: urn:nbn:se:lnu:diva-69895DOI: 10.5829/ijee.2018.09.02.02OAI: oai:DiVA.org:lnu-69895DiVA, id: diva2:1174772
Available from: 2018-01-16 Created: 2018-01-16 Last updated: 2018-07-31
In thesis
1. Landfills and glass dumpsites as future bank accounts of resources – waste characterization and trace elements extraction
Open this publication in new window or tab >>Landfills and glass dumpsites as future bank accounts of resources – waste characterization and trace elements extraction
2018 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Environmental pollution and health threats as well as scarcity of raw materials, water, food and energy are among the main challenges our world are now facing. Simultaneously, landfills and open dumpsites still are the dominant global waste disposal option even with their long term environmental impacts in case of greenhouse gases and contaminated leachates. In this thesis, landfill mining is suggested as a tool that should be included in an enhanced circular economy model (repair, reuse and recycle + extract and recovery) by considering the extraction/recovery of the lost materials in landfills and dumpsites as secondary resources.

Characterization data (composition and physicochemical properties) is considered as a vital source for information for: i. the valorization of excavated wastes, ii. to explore potential hazards and iii. as an important tool for theassessment of the waste management systems and policies. In this thesis,excavated wastes from a classic landfill (Högbytorp in Sweden), a landfill buildup according to the European Directive requirements (Torma in Estonia) andhazardous glass dumpsite (Pukeberg in Sweden) was characterized as a centralstep in exploring the potential of recovering of valuables. In addition, the extraction of trace elements from waste glass and different finefractions were also investigated. The reduction-melting method was developedto extract hazardous concentrations of trace elements from old art and crystalglasses with more than (99%) of recovery of Pb, Cd and As. While threechelating agents (EDTA, DTPA and NTA) were used to extract Pb, Cd, Asand Zn from fine fraction (<2 mm) sampled from Pukeberg glasswork with anextraction efficiency of (40%). Besides, the fractionations of the metals Cu, Znand Cr in the fine fractions (<10 mm) excavated from Högbytorp and Tormalandfills were studied by using a modified sequential extraction procedure.

The findings of this thesis highlighted the need to consider the dumped wastesas secondary resources and landfills and dumpsites as future bank accounts offuture raw materials instead of being burden to the human health and theenvironment.

Place, publisher, year, edition, pages
Växjö: Linnaeus University Press, 2018
Series
Linnaeus University Dissertations ; 308
Keywords
Landfill mining, metals extraction, glass dumpsites, hazardous waste, chemical extraction, reduction-melting
National Category
Environmental Sciences
Research subject
Natural Science, Environmental Science
Identifiers
urn:nbn:se:lnu:diva-69898 (URN)978-91-88761-15-6 (ISBN)978-91-88761-16-3 (ISBN)
Public defence
2018-02-02, 15:57 (English)
Opponent
Supervisors
Available from: 2018-01-17 Created: 2018-01-16 Last updated: 2018-03-14Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full texthttp://www.ijee.net/article_65959_71bbca8f3fd0d737daa8038b36291967.pdf

Authority records BETA

Jani, Yahya

Search in DiVA

By author/editor
Jani, Yahya
By organisation
Department of Biology and Environmental Science
In the same journal
Iranica Journal of Energy and Environment (IJEE)
Environmental Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 260 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf