Multidimensional Projections for Visual Analysis of Social NetworksShow others and affiliations
2012 (English)In: Journal of Computer Science and Technology, ISSN 1000-9000, E-ISSN 1860-4749, Vol. 27, no 4, p. 791-810Article in journal (Refereed) Published
Abstract [en]
Visual analysis of social networks is usually based on graph drawing algorithms and tools. However, social networks are a special kind of graph in the sense that interpretation of displayed relationships is heavily dependent on context. Context, in its turn, is given by attributes associated with graph elements, such as individual nodes, edges, and groups of edges, as well as by the nature of the connections between individuals. In most systems, attributes of individuals and communities are not taken into consideration during graph layout, except to derive weights for force-based placement strategies. This paper proposes a set of novel tools for displaying and exploring social networks based on attribute and connectivity mappings. These properties are employed to layout nodes on the plane via multidimensional projection techniques. For the attribute mapping, we show that node proximity in the layout corresponds to similarity in attribute, leading to easiness in locating similar groups of nodes. The projection based on connectivity yields an initial placement that forgoes force-based or graph analysis algorithm, reaching a meaningful layout in one pass. When a force algorithm is then applied to this initial mapping, the final layout presents better properties than conventional force-based approaches. Numerical evaluations show a number of advantages of pre-mapping points via projections. User evaluation demonstrates that these tools promote ease of manipulation as well as fast identification of concepts and associations which cannot be easily expressed by conventional graph visualization alone. In order to allow better space usage for complex networks, a graph mapping on the surface of a sphere is also implemented.
Place, publisher, year, edition, pages
Springer, 2012. Vol. 27, no 4, p. 791-810
Keywords [en]
social network, visual exploration, multidimensional visualization
National Category
Computer Sciences
Research subject
Computer Science, Information and software visualization
Identifiers
URN: urn:nbn:se:lnu:diva-73252DOI: 10.1007/s11390-012-1265-5OAI: oai:DiVA.org:lnu-73252DiVA, id: diva2:1199797
2018-04-222018-04-222018-08-10Bibliographically approved