lnu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Nonlinear modeling of reinforced dowel joints in timber structures: a combined experimental-numerical study
Vienna University of Technology.ORCID iD: 0000-0001-7203-5948
2018 (English)Doctoral thesis, monograph (Other academic)Alternative title
Nichtlineare Modellierung von querzugverstärkten Stabdübelverbindungen in Holzkonstruktionen - eine kombiniert experimentell-numerische Studie (German)
Abstract [en]

Steel dowels are indispensable elements for the design of joints in modern timber structures. Dowels are broadly used because of their flexibility in design and easy assembling on-site, as well as due to their advantageous mechanical behavior. Recent developments in reinforcement techniques allow for designing ductile dowel joints, which exhibit nonlinear slip behavior. However, currently applied limit state approaches for calculation of connection strength are not able to fully exploit the potential of dowel joints. This calls for development of more advanced calculation methods, which was aimed for in this thesis.

For thorough understanding of the complex mechanical behavior of dowel connections, application of a so-called multiscale approach is advantageous. Thereby, nonlinear loaddeformation behavior of dowel connections is studied on different length scales, from the scale of connection components, up to the joint level. The aim of this thesis was to exploit knowledge from lower scales in models that finally allow for nonlinear analysis of timber structures. In the work at hand, this was achieved by a combined experimental-numerical analysis.

Experimental studies on the nonlinear embedment slip of ductile dowel connections, and its relation to the orthotropic material behavior of wood, was one of the objectives of this work. Breaking new ground by testing up to large dowel displacements, at various angles to the grain, for unconstrained and constrained lateral displacement conditions, required development of new testing procedures and test setups. Test results gave access to nonlinear embedment slip curves and showed their dependence on loading direction and lateral displacement conditions.

In the next step, embedment slip data were exploited in modeling of single-dowel connections. Beam-on-nonlinear foundation modeling was applied for this purpose. Validation of connection tests and a parameter study not only highlighted suitability of the calculation method, but allowed for gaining insight into limit states. Thus, beam-on-foundation modeling was found to be an attractive alternative to advanced 3D FEM models for engineering design.

Parameterized equations for regression analysis of nonlinear slip curves, and interaction curves describing the grain angle dependence of mechanical parameters, were summarized in a literature review. With these equations at hand, a multi-dimensional parameterization method for the nonlinear slip as a function of the load-to-grain angle was developed. This method was applied to experimental data derived in embedment and single-dowel connection tests as well as in simulations. Analytical equations for connection slip are expected to facilitate engineering modeling at the single-dowel connection and joint level, respectively.

Joint modeling aimed at establishing a calculation method suitable for engineering design with an attractive trade-off between modeling effort, calculation time and accuracy. This was tackled by a semi-analytical model based on nonlinear elastic springs for the dowel slip and rigid connection members. Thereby, global joint slip, and thus stiffness and strength of joints, as well as local load distribution within joints can be predicted. This model proved to be suitable for single-dowel-based and joint-based design concepts. Calculation examples showed pronounced influence of loading direction dependence and nonlinearity of dowel slip on local load distribution, as well as on global joint slip. Influence of interaction between internal forces on the joint stiffness became obvious from structural analysis with nonlinear joint slip.

This work covers a combined experimental-numerical analysis of the slip behavior of ductile dowel joints, from the wood embedment and steel dowel bending behavior, the single-dowel slip, to the joint behavior, with final application in nonlinear structural analysis. Presented models predicted nonlinear slip with suitable accuracy and efficiency. Application of nonlinear joint slip in structural analysis showed the potential of ductile dowel joints, which could be exploited in engineering design by the herein presented multiscale modeling strategy.

Place, publisher, year, edition, pages
Vienna: Vienna University of Technology , 2018. , p. 165
National Category
Wood Science Composite Science and Engineering
Research subject
Technology (byts ev till Engineering); Technology (byts ev till Engineering), Civil engineering; Technology (byts ev till Engineering), Forestry and Wood Technology
Identifiers
URN: urn:nbn:se:lnu:diva-73293OAI: oai:DiVA.org:lnu-73293DiVA, id: diva2:1199979
Public defence
2018-01-24, HS 12, Karlsplatz 13, Vienna, 12:50 (English)
Opponent
Supervisors
Available from: 2018-04-25 Created: 2018-04-23 Last updated: 2018-04-25Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

http://katalog.ub.tuwien.ac.at/AC14536462

Authority records BETA

Schweigler, Michael

Search in DiVA

By author/editor
Schweigler, Michael
Wood ScienceComposite Science and Engineering

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 31 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf