lnu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
A numerical model for slip curves of dowel connections and its application to timber structures
Vienna University of Technology.ORCID iD: 0000-0001-7203-5948
2013 (English)Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
Abstract [en]

Wood as a natural and renewable material currently experiences a revival as structural building material. New technologies and a new design standard request appropriate, modern design methods for timber structures. Particularly, the design of modern timber connections is of importance since more challenging timber constructions demand ambitious connections. Most connections in timber structures are compliant in the sense that relative deformations between the connected structural elements occur during load transfer. In particular dowel connections exhibit this behavior since load transfer in dowel connections is based on the compliant embedment behavior of stiff steel dowels in wood.

The aim of this thesis is to develop a model for a consistent calculation of the load-deformation relationship of connections. Additionally, this model is applied to timber structures to study the influence of compliant connections on the structural behavior. As a basis for the modeling of dowel connections, properties of single-dowel connections are presented. Different responses of wood in case of different loading directions, as well as several models for the calculation of single-dowel slip curves are discussed. Significant differences in the predicted load-deformation behavior of single-dowels can be observed among these approaches. A sub-model is used to determine realistic single-dowel slip curves for arbitrary connection configurations. Furthermore, the state-of-the-art approach for the determination of connection slip curves of multi-dowel connections is discussed. The restriction of this approach to some specific design situations is highlighted. These limitations of the current design approach are the motivation to develop a model for the calculation of slip curves of multi-dowel connections. This model enables a straight forward determination of member forces and connection slip curves for an arbitrary set of deformations. The single calculation steps and the feasibility of application on arbitrary connection configurations are discussed. Furthermore, a modification of the model to determine the deformation and force distribution within the connection for specific member forces is presented.

Finally, the model is applied to different connections to illustrate their behavior for simple design examples. Moreover, connection slip curves have been implemented in the structural analysis of a static indetermined system in order to illustrate the necessity of considering the compliance of connections in the design of timber structures. It is shown that negligence of the connection slip may lead to uneconomic or even unsafe timber structures. Furthermore, the importance of an exact definition of the connection slip curves is discussed. Even insignificant differences from standard configurations may lead to remarkable changes in the connection behavior and, consequently, in the behavior of the structure. Moreover, a considerable influence of the used method to describe the single-dowel behavior on the behavior of the connection and, consequently, on the structural behavior has been found.

Place, publisher, year, edition, pages
2013. , p. 112
National Category
Composite Science and Engineering Building Technologies Wood Science
Identifiers
URN: urn:nbn:se:lnu:diva-73307OAI: oai:DiVA.org:lnu-73307DiVA, id: diva2:1200010
Supervisors
Examiners
Available from: 2018-06-19 Created: 2018-04-23 Last updated: 2018-06-19Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Full text

Authority records BETA

Schweigler, Michael

Search in DiVA

By author/editor
Schweigler, Michael
Composite Science and EngineeringBuilding TechnologiesWood Science

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 3 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf