lnu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
The Paley-Wiener Theorems for Gevrey Functions and Ultradistributions
Linnaeus University, Faculty of Technology, Department of Mathematics.
2018 (English)Independent thesis Basic level (degree of Bachelor), 10 credits / 15 HE creditsStudent thesis
Abstract [en]

In this thesis we study the spaces of Gevrey functions and ultradistributions, focusing primarily on the properties reflected on their Fourier-Laplace transforms. In particular, we study the Paley-Wiener Theorems for compactly supported Gevrey functions and compactly supported Gevrey ultradistributions.

Place, publisher, year, edition, pages
2018. , p. 53
Keywords [en]
Paley-Wiener Theorems, Gevrey functions, Gevrey ultradistributions
National Category
Mathematical Analysis
Identifiers
URN: urn:nbn:se:lnu:diva-75628OAI: oai:DiVA.org:lnu-75628DiVA, id: diva2:1216782
Subject / course
Mathematics
Educational program
Applied Mahtematics Programme, 180 credits
Supervisors
Examiners
Available from: 2018-06-12 Created: 2018-06-12 Last updated: 2018-06-12Bibliographically approved

Open Access in DiVA

fulltext(577 kB)20 downloads
File information
File name FULLTEXT01.pdfFile size 577 kBChecksum SHA-512
69ff6fc2f55be0a1f7ba0e672832caf0a604d4b6012d38d4dca3daca4fcb9b948f830c007f4e5db9098b15096752e48d433e1b6635c23c2c44de3f23a86ce4c5
Type fulltextMimetype application/pdf

By organisation
Department of Mathematics
Mathematical Analysis

Search outside of DiVA

GoogleGoogle Scholar
Total: 20 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 57 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf