lnu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Systematics of electronic and magnetic properties in the transition metal doped Sb2Te3 quantum anomalous Hall platform
Linnaeus University, Faculty of Technology, Department of Physics and Electrical Engineering.
Linnaeus University, Faculty of Technology, Department of Physics and Electrical Engineering.ORCID iD: 0000-0003-4489-7561
NORDITA, Sweden.
NORDITA, Sweden.
Show others and affiliations
2018 (English)In: Physical Review B, ISSN 2469-9950, E-ISSN 2469-9969, Vol. 97, no 15, article id 155429Article in journal (Refereed) Published
Abstract [en]

The quantum anomalous Hall effect (QAHE) has recently been reported to emerge in magnetically doped topological insulators. Although its general phenomenology is well established, the microscopic origin is far from being properly understood and controlled. Here, we report on a detailed and systematic investigation of transition metal (TM) doped Sb2Te3. By combining density functional theory calculations with complementary experimental techniques, i.e., scanning tunneling microscopy, resonant photoemission, and x-raymagnetic circular dichroism, we provide a complete spectroscopic characterization of both electronic and magnetic properties. Our results reveal that the TM dopants not only affect the magnetic state of the host material, but also significantly alter the electronic structure by generating impurity-derived energy bands. Our findings demonstrate the existence of a delicate interplay between electronic and magnetic properties in TM doped topological insulators. In particular, we find that the fate of the topological surface states critically depends on the specific character of the TM impurity: while V-and Fe-doped Sb2Te3 display resonant impurity states in the vicinity of the Dirac point, Cr and Mn impurities leave the energy gap unaffected. The single-ion magnetic anisotropy energy and easy axis, which control the magnetic gap opening and its stability, are also found to be strongly TM impurity dependent and can vary from in plane to out of plane depending on the impurity and its distance from the surface. Overall, our results provide general guidelines for the realization of a robust QAHE in TM doped Sb2Te3 in the ferromagnetic state.

Place, publisher, year, edition, pages
American Physical Society, 2018. Vol. 97, no 15, article id 155429
National Category
Physical Sciences
Research subject
Natural Science, Physics
Identifiers
URN: urn:nbn:se:lnu:diva-75724DOI: 10.1103/PhysRevB.97.155429ISI: 000430545100010Scopus ID: 2-s2.0-85045930314OAI: oai:DiVA.org:lnu-75724DiVA, id: diva2:1217343
Available from: 2018-06-13 Created: 2018-06-13 Last updated: 2020-10-20Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Islam, FhokrulCanali, Carlo M.

Search in DiVA

By author/editor
Islam, FhokrulCanali, Carlo M.
By organisation
Department of Physics and Electrical Engineering
In the same journal
Physical Review B
Physical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 320 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf