lnu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
HESS observations of RX J1713.7-3946 with improved angular and spectral resolution: Evidence for gamma-ray emission extending beyond the X-ray emitting shell
North-West University, South Africa.
University of Hamburg, Germany.
Max Planck Institute for Nuclear Physics, Germany ; Dublin Institute for Advanced Studies, Ireland ; National Academy of Sciences of the Republic of Armenia, Armenia.
Max Planck Institute for Nuclear Physics, Germany.
Show others and affiliations
2018 (English)In: Astronomy and Astrophysics, ISSN 0004-6361, E-ISSN 1432-0746, Vol. 612, article id A6Article in journal (Refereed) Published
Abstract [en]

Supernova remnants exhibit shock fronts (shells) that can accelerate charged particles up to very high energies. In the past decade, measurements of a handful of shell-type supernova remnants in very high-energy gamma rays have provided unique insights into the acceleration process. Among those objects, RX J1713.7-3946 (also known as G347.3-0.5) has the largest surface brightness, allowing us in the past to perform the most comprehensive study of morphology and spatially resolved spectra of any such very high-energy gamma-ray source. Here we present extensive new H.E.S.S. measurements of RX J1713.7-3946, almost doubling the observation time compared to our previous publication. Combined with new improved analysis tools, the previous sensitivity is more than doubled. The H.E.S.S. angular resolution of 0.048 degrees (0.036 degrees above 2 TeV) is unprecedented in gamma-ray astronomy and probes physical scales of 0.8 (0.6) parsec at the remnant's location. The new H. E. S. S. image of RX J1713.7-3946 allows us to reveal clear morphological di ff erences between X-rays and gamma rays. In particular, for the outer edge of the brightest shell region, we find the first ever indication for particles in the process of leaving the acceleration shock region. By studying the broadband energy spectrum, we furthermore extract properties of the parent particle populations, providing new input to the discussion of the leptonic or hadronic nature of the gamma-ray emission mechanism.

Place, publisher, year, edition, pages
EDP Sciences, 2018. Vol. 612, article id A6
Keywords [en]
acceleration of particles, cosmic rays, ISM: supernova remnants, gamma rays: general, astroparticle physic
National Category
Astronomy, Astrophysics and Cosmology
Research subject
Physics, Astroparticle Physics
Identifiers
URN: urn:nbn:se:lnu:diva-76476DOI: 10.1051/0004-6361/201629790ISI: 000429404700006Scopus ID: 2-s2.0-85044161611OAI: oai:DiVA.org:lnu-76476DiVA, id: diva2:1232092
Available from: 2018-07-10 Created: 2018-07-10 Last updated: 2022-05-10Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Becherini, YvonneFarnier, ChristianProkhorov, DmitryProkoph, HeikePunch, Michael

Search in DiVA

By author/editor
Andersson, TomBecherini, YvonneFarnier, ChristianProkhorov, DmitryProkoph, HeikePunch, Michael
By organisation
Department of Physics and Electrical Engineering
In the same journal
Astronomy and Astrophysics
Astronomy, Astrophysics and Cosmology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 677 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf