lnu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Population study of Galactic supernova remnants at very high gamma-ray energies with HESS
North-West University, South Africa.
University of Hamburg, Germany.
Max Planck Institute for Nuclear Physics, Germany ; Dublin Institute for Advanced Studies, Ireland ; National Academy of Sciences of the Republic of Armenia, Armenia.
Max Planck Institute for Nuclear Physics, Germany.
Show others and affiliations
2018 (English)In: Astronomy and Astrophysics, ISSN 0004-6361, E-ISSN 1432-0746, Vol. 612, article id A3Article in journal (Refereed) Published
Abstract [en]

Shell-type supernova remnants (SNRs) are considered prime candidates for the acceleration of Galactic cosmic rays (CRs) up to the knee of the CR spectrum at E approximate to 3 x 10(15) eV. Our MilkyWay galaxy hosts more than 350 SNRs discovered at radio wavelengths and at high energies, of which 220 fall into the H.E.S.S. Galactic Plane Survey (HGPS) region. Of those, only 50 SNRs are coincident with a H.E.S.S source and in 8 cases the very high-energy (VHE) emission is firmly identified as an SNR. The H.E.S.S. GPS provides us with a legacy for SNR population study in VHE gamma-rays and we use this rich data set to extract VHE flux upper limits from all undetected SNRs. Overall, the derived flux upper limits are not in contradiction with the canonical CR paradigm. Assuming this paradigm holds true, we can constrain typical ambient density values around shell-type SNRs to n <= 7 cm(-3) and electron-to-proton energy fractions above 10 TeV to epsilon(ep) <= 5 x 10(-3). Furthermore, comparisons of VHE with radio luminosities in non-interacting SNRs reveal a behaviour that is in agreement with the theory of magnetic field amplification at shell-type SNRs.

Place, publisher, year, edition, pages
EDP Sciences, 2018. Vol. 612, article id A3
Keywords [en]
gamma rays: general, ISM: supernova remnants
National Category
Astronomy, Astrophysics and Cosmology
Research subject
Physics, Astroparticle Physics
Identifiers
URN: urn:nbn:se:lnu:diva-76469DOI: 10.1051/0004-6361/201732125ISI: 000429404700003Scopus ID: 2-s2.0-85045517455OAI: oai:DiVA.org:lnu-76469DiVA, id: diva2:1232113
Available from: 2018-07-10 Created: 2018-07-10 Last updated: 2019-08-29Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Becherini, YvonneFarnier, ChristianProkhorov, DmitryPunch, Michael

Search in DiVA

By author/editor
Becherini, YvonneFarnier, ChristianProkhorov, DmitryPunch, Michael
By organisation
Department of Physics and Electrical Engineering
In the same journal
Astronomy and Astrophysics
Astronomy, Astrophysics and Cosmology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 422 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf