lnu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Photosynthesis response to temperatures – A study of fertilized and unfertilized Picea abies : Fotosyntes i respons till temperatur – En studie av gödslad och ogödslad Picea abies
Linnaeus University, Faculty of Technology, Department of Forestry and Wood Technology.
2018 (English)Independent thesis Basic level (degree of Bachelor), 10 credits / 15 HE creditsStudent thesisAlternative title
Fotosyntes i respons till temperatur – En studie av gödslad och ogödslad Picea abies (Swedish)
Abstract [en]

The effect climate change has on forest trees is a large scaled topic. It is to believe that one of the largest threat to the environment today is global warming (IPPC, 2007). The use of fossil fuels seems to be the big threat with its greenhouse gas (GHG) emission and therefore forest is of interest. Forest contributes in several ways. Forest trees work as a renewable source of numerus materials and as it takes up CO

2 from the greenhouse gasses it gives us oxygen (O2). The important process of photosynthesis, to able production of more trees and creation of more forests, tells us the vitality of understanding the tree physiology to the fullest. The response of photosynthesis to temperature is a central facet of trees’ response to climate change. With its photosynthesis plants play a large role in the carbon cycle as they store the hazardous carbon dioxide helping us humans to deal with problems directly linked to climatic change and in the same time they build up biomass that can be used as a renewable source. To understand, and to find the key, how plants can achieve optimum potential of photosynthesis several observations were made using plant material from fertilized and unfertilized Picea abies. Well acknowledged leaf gas exchange measurements were used to see the limitations of photosynthesis, observing the net CO2 uptake rate (Anet), the maximum Rubisco carboxylation (Vcmax), maximum rate of electron transport for regeneration of RuBP (Jmax) and their unique response to temperatures. For three days observations were conducted at the Slu Asa field research station in Lammhult, Sweden. In addition to gas exchange measurements, nitrogen (N), phosphorus (P) and chlorophyll content was measured in needles of the fertilized and unfertilized P. abies to see if the content somehow made an impact on photosynthetic parameters and the influence nutrients might have on the specific leaf area (SLA). Results from the observations showed that optimum temperature for photosynthesis varies to be by fertilized 22°C and unfertilized 19°C. The net photosynthetic rate responded to the influence by added fertilizers to almost a double, 9.10 μmol m−2 sec−1 than of the unfertilized, 5.36 μmol m−2 sec−1. These results indicate that a fertilized P. abies has a greater potency to capture carbon than of an unfertilized P. abies. The result also reveals the future prospect of adding fertilizer to a P. abies as a potential of growth in biomass as well as a carbon sink when atmospheric CO2 levels rise. There were no great differences in the behaviour between Vcmax and Jmax to the added or non-added fertilized P. abies. Perhaps the fact that given fertilizer contained both nitrogen and phosphorous could have in their combinations influenced the sensitivity of the relationship between them two and therefore also the result. The presence of N and P in the fertilized P. abies affected the concentration of chlorophyll positively, paving the way for photosynthesis, accumulated biomass and possibly for trees defence against abiotic stress factors.

Place, publisher, year, edition, pages
2018. , p. 28
Keywords [en]
photosynthesis, CO2, nitrogen, Picea abies, Rubisco
National Category
Forest Science
Identifiers
URN: urn:nbn:se:lnu:diva-76830OAI: oai:DiVA.org:lnu-76830DiVA, id: diva2:1232541
Subject / course
Skogs- och träteknik
Educational program
Forest Production and Wood utilization Programme, 180 credits
Supervisors
Examiners
Available from: 2018-07-20 Created: 2018-07-11 Last updated: 2018-07-20Bibliographically approved

Open Access in DiVA

fulltext(861 kB)3 downloads
File information
File name FULLTEXT01.pdfFile size 861 kBChecksum SHA-512
b0f9639543951ff34e360083c8ad77e2c0be17d70173599ce13246d419b13594a04470c7cadca0bd56c47f104ce76b6c938f8e1467f24b2772e0df3f38c45be4
Type fulltextMimetype application/pdf

By organisation
Department of Forestry and Wood Technology
Forest Science

Search outside of DiVA

GoogleGoogle Scholar
Total: 3 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 17 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf