lnu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Gas seeps and gas hydrates in the Amazon deep-sea fan
Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science. Pontificia Universidade Catolica do Rio Grande do Sul (PUCRS), Brazil.ORCID iD: 0000-0003-4796-8177
Pontificia Universidade Catolica do Rio Grande do Sul (PUCRS), Brazil.
Pontificia Universidade Catolica do Rio Grande do Sul (PUCRS), Brazil.
Pontificia Universidade Catolica do Rio Grande do Sul (PUCRS), Brazil.
Show others and affiliations
2018 (English)In: Geo-Marine Letters, ISSN 0276-0460, E-ISSN 1432-1157, Vol. 38, no 5, p. 429-438Article in journal (Refereed) Published
Abstract [en]

Deep-sea fans have been proposed to act as carbon sinks, rapid deposition driving shallow methanogenesis to favor net storage within the gas hydrate stability zone (GHSZ). Here, we present new evidence of widespread gas venting from the GHSZ on the upper Amazon deep-sea fan, together with analyses of the first samples of gas hydrates recovered offshore NE Brazil. Multibeam water column and seafloor imagery over an 18,000-km2 area of the upper Amazon fan reveal 53 water column gas plumes, rising from venting features in water depths of 650–2600 m. Most gas vents (60%) are located along seafloor faults that record the ongoing gravitational collapse of the fan above deep décollements, while others (40%) are located in water depths of 650–715 m within the upper edge of the GHSZ. Gas compositions from hydrates recovered in vents at three locations on and north of the fan indicate biogenic sources (dominantly methane with 2–15% of CO2; δ13C from − 81.1 to − 77.3‰), whereas samples from vents adjacent to the fan proper include possible thermogenic contributions (methane 95%, CO2 4%, and ethane 1%; δ13C – 59.2‰). These results concur with previous findings that the upper edge of the GHSZ may be sensitive to temporal changes in water temperatures, but further point to the importance of gas escape from within areas of gas hydrate stability. Our results suggest the role of fluid migration along pathways created by faulting within rapidly deposited passive margin depocenters, which are increasingly recognized to undergo gravitational collapse above décollements. Our findings add to evidence that gas can escape from sediments to the sea in areas where gas hydrates are stable on passive margins, and suggest the need of further studies of the dynamics of deep-sea depocenters in relation to carbon cycling.

Place, publisher, year, edition, pages
Springer, 2018. Vol. 38, no 5, p. 429-438
National Category
Earth and Related Environmental Sciences
Research subject
Natural Science
Identifiers
URN: urn:nbn:se:lnu:diva-77182DOI: 10.1007/s00367-018-0546-6ISI: 000446101900004Scopus ID: 2-s2.0-85052069920OAI: oai:DiVA.org:lnu-77182DiVA, id: diva2:1239661
Available from: 2018-08-17 Created: 2018-08-17 Last updated: 2020-10-23Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Ketzer, João Marcelo

Search in DiVA

By author/editor
Ketzer, João Marcelo
By organisation
Department of Biology and Environmental Science
In the same journal
Geo-Marine Letters
Earth and Related Environmental Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 130 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf