lnu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Beam-on-foundation modelling as an alternative design method for timber joints with dowel-type fasteners: Part 1: Strength and stiffness per shear plane of single-fastener joints.
ENSTIB/LERMAB, University of Lorraine, France.
ENSTIB/LERMAB, University of Lorraine, France.
Linnaeus University, Faculty of Technology, Department of Building Technology.ORCID iD: 0000-0001-7203-5948
Linnaeus University, Faculty of Technology, Department of Building Technology.ORCID iD: 0000-0002-7829-4630
2018 (English)In: 5th INTER Proceedings, 2018: International Network on Timber Engineering Research 2018, Karlsruher Institut für Technologie , 2018, article id 51-7-13Conference paper, Published paper (Refereed)
Abstract [en]

Optimised manufacturing processes made possible the production of larger dimensions timber products, which allow for the design of remarkable structures. In the last version of the EN 1995-1-1, it seemed important to its drafters to propose design formulas to estimate stiffness of joints in accordance with the needs of that time. Aware of the technical jump that had to be managed, the proposed rules remained simple. However, simple design equations became insufficient to cope with present-day challenges, which are, e.g., related to the design of high-rise wooden buildings. In EN 1995-1-1, the resistant capacity of dowel-type timber joints is no longer determined by empirical formulas but it is based on the limit analysis proposed by Johansen (1949). This methodology however shows limits for complex joints even though many improvements have been made since its introduction (Blaß and Laskewitz 2000). In parallel with these analytical approaches, developments in computational mechanics made it possible to develop simple numerical methods (Foschi 1974, Hirai 1983), which taken even into account nonlinear phenomena. These approaches have remained unused in practical design due to their complex implementation and their high running time, at the time of their invention, while todays computational resources strongly reduced corresponding limitations. Thus, numerical modelling of connections can help engineers to fill the gaps of the EN 1995-1-1 and to cope with variability in connection design. For this purpose, dowel-type fasteners are numerically modelled as elastoplastic beams on a nonlinear foundation in engineered in wood-based products (Sawata and Yasumura 2003, Hochreiner et al. 2013). This method is called Beam-On-Foundation (BOF) modelling and shows huge potential for engineering design. The purpose of this paper is to show how this method can substitute and complement limit analysis and empirical stiffness formulas of timber joints with dowel-type fasteners.

Place, publisher, year, edition, pages
Karlsruher Institut für Technologie , 2018. article id 51-7-13
National Category
Building Technologies
Research subject
Technology (byts ev till Engineering), Civil engineering
Identifiers
URN: urn:nbn:se:lnu:diva-77867OAI: oai:DiVA.org:lnu-77867DiVA, id: diva2:1249609
Conference
5th INTER Meeting, 13-16 August, 2018, Tallin
Available from: 2018-09-19 Created: 2018-09-19 Last updated: 2018-10-04Bibliographically approved

Open Access in DiVA

No full text in DiVA

Authority records BETA

Schweigler, MichaelBader, Thomas K.

Search in DiVA

By author/editor
Schweigler, MichaelBader, Thomas K.
By organisation
Department of Building Technology
Building Technologies

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 115 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf