Thirty-two (32) boards of Norway spruce with cross-sectional dimensions of 145×45 mm2 were first tested non-destructively in a four-point static bending test, were then thermally modified according to the ThermoWood® process, and were finally tested destructively in the mentioned test set up. For one of these boards, the 2D strain fields occurring due to pure bending were recorded, both before and after thermal modification, over the surface of a knotty part of the board using a non-contact optical deformation measurement system. The objectives were to get more insight into the static bending behaviour of thermally modified timber (TMT), specifically with regard to the local and global modulus of elasticity (MOE) and their respective relationship to bending strength, and the strain development around a cluster of knots. The bending strength was significantly reduced by thermal treatment, whereas the effect on the MOEs was limited. Linear regression analyses demonstrated that bending strength of TMT can be predicted by employing stiffness as indicating property. Strain field measurements showed that at the examined levels of loading the quantity and distribution of strains in a knotty area were not influenced by thermal modification. It was therefore suggested that the influence of thermal modification on global stiffness, as well as on local stiffness around knots, is limited.
Ej belagd 190524