European Energy Performance of Building Directive (EPBD) defined a target as all new constructed buildings within the EU region must be a zero-energy building by the end of 2020. Furthermore, all European countries must ensure the minimum comfort threshold in energy calculations. Reducing energy consumption and improving indoor comfort, including visual and thermal com-fort, can contribute to economic benefits. However, the main problem is the exi-tance of conflicts among visual comfort, thermal comfort, energy consumption and life cycle cost. To solve the abovementioned problem and to fulfil the EPBD’s target, this study aims to apply an integration between BIM, optimiza-tion and Analytical Hierarchy Process as a multi-criteria decision-making method on an office building in Sweden. Accordingly, 3 types of windows and 5 types of external wall, ground floor and external roof constructions were specified as op-timization variables. The combination between the optimization variables gener-ated 375 design alternatives. The performance of all 375 design alternatives were evaluated with respect to visual comfort, thermal comfort, energy consumption and life cycle cost. Later, AHP was used to find a trade-off design alternative. The results show that the combination between window type 1, external wall type 5, ground floor type 1 and external roof type 5 is the trade-off design alternative. Furthermore, the results show the integration enables to solve the abovemen-tioned conflicts and to fulfil the EPBD’s target.