lnu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
An experimental study on smectites as nitrogen conveyors in subduction zones
Univ Fed Rio Grande do Sul, Brazil.
Univ Fed Rio Grande do Sul, Brazil.
Univ Fed Rio Grande do Sul, Brazil..
Univ Fed Rio Grande do Sul, Brazil.
Show others and affiliations
2019 (English)In: Applied Clay Science, ISSN 0169-1317, E-ISSN 1872-9053, Vol. 168, p. 409-420Article in journal (Refereed) Published
Abstract [en]

We performed high pressure and high temperature (HPHT) experiments on NH4-doped montmorillonite (similar to 2 wt % of NH4) under pressures of 2.5, 4.0, and 7.7 GPa and temperatures from 200 to 700 degrees C. Each experiment was analyzed with XRD, FTIR, CHN elemental analysis, and SEM in order to determine the NH4-Smectite phase changes and their morphology, and the presence of ammonium in the runs. Our results show that smectite can easily transport nitrogen, speciated as ammonium (NH4+), incorporated into the smectite interlayer in mildly reducing environments to deeper levels in the Earth through cold thermal regime subduction zones. NH4-Smectite transforms into NH4-enriched micaceous phase (tobelite) through a NH4+-enriched interlayered I/S phase in relatively low pressures and temperatures (around 2.5 GPa and 500 degrees C). Tobelite is stable until more extreme conditions (7.7 GPa and 700 degrees C), together with lesser amounts of buddingtonite (an ammonium-bearing feldspar) kyanite, and garnet. Our experiments also show the effect of nitrogen in the feldspar stability, as potassic and sodic feldspar are stable up to similar to 5 GPa, while buddingtonite, is observed to be stable up to 7.7 GPa. Nitrogen can return to the surface once the stability of these nitrogen-enriched minerals is reached due to pressure or temperature increasing.

Place, publisher, year, edition, pages
Elsevier, 2019. Vol. 168, p. 409-420
Keywords [en]
Nitrogen, Subduction zones, Ammonium, Pelagic sediments
National Category
Earth and Related Environmental Sciences
Research subject
Natural Science, Environmental Science
Identifiers
URN: urn:nbn:se:lnu:diva-80729DOI: 10.1016/j.clay.2018.11.006ISI: 000455692700044OAI: oai:DiVA.org:lnu-80729DiVA, id: diva2:1290468
Available from: 2019-02-20 Created: 2019-02-20 Last updated: 2019-02-20Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Authority records BETA

Ketzer, João Marcelo

Search in DiVA

By author/editor
Ketzer, João Marcelo
In the same journal
Applied Clay Science
Earth and Related Environmental Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 39 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf