lnu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Pseudo-Differential Calculus in Anisotropic Gelfand-Shilov Setting
Univ Turin, Italy.
Univ Turin, Italy.
Linnaeus University, Faculty of Technology, Department of Mathematics.ORCID iD: 0000-0003-1921-8168
2019 (English)In: Integral equations and operator theory, ISSN 0378-620X, E-ISSN 1420-8989, Vol. 91, no 3, article id UNSP 26Article in journal (Refereed) Published
Abstract [en]

We study some classes of pseudo-differential operators with symbols a admitting anisotropic exponential type growth at infinity. We deduce mapping properties for these operators on Gelfand-Shilov spaces. Moreover, we deduce algebraic and certain invariance properties of these classes.

Place, publisher, year, edition, pages
Springer, 2019. Vol. 91, no 3, article id UNSP 26
Keywords [en]
Gevrey regularity, Symbols of infinite order, Gelfand-Shilov spaces, Short-time Fourier transform, Anisotropic
National Category
Mathematics
Research subject
Natural Science, Mathematics
Identifiers
URN: urn:nbn:se:lnu:diva-84519DOI: 10.1007/s00020-019-2518-2ISI: 000467655500001Scopus ID: 2-s2.0-85064002636OAI: oai:DiVA.org:lnu-84519DiVA, id: diva2:1320795
Available from: 2019-06-05 Created: 2019-06-05 Last updated: 2019-08-29Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records BETA

Toft, Joachim

Search in DiVA

By author/editor
Toft, Joachim
By organisation
Department of Mathematics
In the same journal
Integral equations and operator theory
Mathematics

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 71 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf