lnu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
The relative importance of land use and climatic change in Alpine catchments
ETH Zurich, Switzerland.ORCID iD: 0000-0002-6692-9838
Forschungsanstalt Agroscope Reckenholz-Tänikon ART, Switzerland.
ETH Zurich, Switzerland.
2012 (English)In: Climatic Change, ISSN 0165-0009, E-ISSN 1573-1480, Vol. 111, no 2, p. 279-300Article in journal (Refereed) Published
Abstract [en]

Carbon storage and catchment hydrology are influenced both by land use changes and climatic changes, but there are few studies addressing both responses under both driving forces. We investigated the relative importance of climate change vs. land use change for four Alpine catchments using the LPJ-GUESS model. Two scenarios of grassland management were calibrated based on the more detailed model PROGRASS. The simulations until 2100 show that only reforestation could lead to an increase of carbon storage under climatic change, whereby a cessation of carbon accumulation occurred in all catchments after 2050. The initial increase in carbon storage was attributable mainly to forest re-growth on abandoned land, whereas the stagnation and decline in the second half of the century was mainly driven by climate change. If land was used more intensively, i.e. as grassland, litter input to the soil decreased due to harvesting, resulting in a decline of soil carbon storage (1.2−2.9 kg C m–2) that was larger than the climate-induced change (0.8–1.4 kg C m−2). Land use change influenced transpiration both directly and in interaction with climate change. The response of forested catchments diverged with climatic change (11–40 mm increase in AET), reflecting the differences in forest age, topography and water holding capacity within and between catchments. For grass-dominated catchments, however, transpiration responded in a similar manner to climate change (light management: 23–32 mm AET decrease, heavy management: 29–44 mm AET decrease), likely because grassroots are concentrated in the uppermost soil layers. Both the water and the carbon cycle were more strongly influenced by land use compared to climatic changes, as land use had not only a direct effect on carbon storage and transpiration, but also an indirect effect by modifying the climate change response of transpiration and carbon flux in the catchments. For the carbon cycle, climate change led to a cessation of the catchment response (sink/source strength is limited), whereas for the water cycle, the effect of land use change remains evident throughout the simulation period (changes in evapotranspiration do not attenuate). Thus we conclude that management will have a large potential to influence the carbon and water cycle, which needs to be considered in management planning as well as in climate and hydrological modelling.

Place, publisher, year, edition, pages
Springer, 2012. Vol. 111, no 2, p. 279-300
National Category
Climate Research
Research subject
Natural Science, Environmental Science
Identifiers
URN: urn:nbn:se:lnu:diva-89452DOI: 10.1007/s10584-011-0209-3ISI: 000300314500007Scopus ID: 2-s2.0-84856726014OAI: oai:DiVA.org:lnu-89452DiVA, id: diva2:1357517
Available from: 2019-10-04 Created: 2019-10-04 Last updated: 2021-04-28Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Wolf, Annett

Search in DiVA

By author/editor
Wolf, Annett
In the same journal
Climatic Change
Climate Research

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 61 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf