lnu.sePublications
Planned maintenance
A system upgrade is planned for 10/12-2024, at 12:00-13:00. During this time DiVA will be unavailable.
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Detection of REST Patterns and Antipatterns: A Heuristics-Based Approach
Université du Québec à Montréal, Canada;École Polytechnique de Montréal, Canada.ORCID iD: 0000-0001-7092-2244
Université du Québec à Montréal, Canada;École supérieure d’informatique, France.
Université du Québec à Montréal, Canada.
École Polytechnique de Montréal, Canada.
2014 (English)In: Service-Oriented Computing. ICSOC 2014 / [ed] Franch X., Ghose A.K., Lewis G.A., Bhiri S., Springer, 2014, p. 230-244Conference paper, Published paper (Refereed)
Abstract [en]

REST (REpresentational State Transfer), relying on resources as its architectural unit, is currently a popular architectural choice for building Web-based applications. It is shown that design patterns—good solutions to recurring design problems—improve the design quality and facilitate maintenance and evolution of software systems. Antipatterns, on the other hand, are poor and counter-productive solutions. Therefore, the detection of REST (anti)patterns is essential for improving the maintenance and evolution of RESTful systems. Until now, however, no approach has been proposed. In this paper, we propose SODA-R (Service Oriented Detection for Antipatterns in REST), a heuristics-based approach to detect (anti)patterns in RESTful systems. We define detection heuristics for eight REST antipatterns and five patterns, and perform their detection on a set of 12 widely-used REST APIs including BestBuy, Facebook, and DropBox. The results show that SODA-R can perform the detection of REST (anti)patterns with high accuracy. We also found that Twitter and DropBox are not well-designed, i.e., contain more antipatterns. In contrast, Facebook and BestBuy are well-designed, i.e., contain more patterns and less antipatterns.

Place, publisher, year, edition, pages
Springer, 2014. p. 230-244
Series
Lecture Notes in Computer Science, ISSN 0302-9743, E-ISSN 1611-3349 ; 8831
National Category
Software Engineering
Research subject
Computer Science, Software Technology
Identifiers
URN: urn:nbn:se:lnu:diva-92192DOI: 10.1007/978-3-662-45391-9_16ISBN: 978-3-662-45390-2 (print)ISBN: 978-3-662-45391-9 (electronic)OAI: oai:DiVA.org:lnu-92192DiVA, id: diva2:1394189
Conference
12th International Conference on Service-Oriented Computing, ICSOC 2014; Paris, France; 3-6 November 2014
Available from: 2020-02-18 Created: 2020-02-18 Last updated: 2020-04-07Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Authority records

Palma, Francis

Search in DiVA

By author/editor
Palma, Francis
Software Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric score

doi
isbn
urn-nbn
Total: 60 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf