Open this publication in new window or tab >>2023 (English)Doctoral thesis, comprehensive summary (Other academic)
Flerfaskontinuummodellering av trä baserat på blandningsteori
Abstract [en]
Wood has been used as a construction material for a very long time. The development of efficient industrial production processes of wood has expanded the use of the material with the introduction of new products, such as engineered wood products. Considering the adversely changing climate, the use of wood in construction is advocated due to its environmental benefits, such as its low carbon footprint. As a naturally growing material, however, wood has a high moisture content when harvested. Additionally, the chemical composition of wood fibers together with its porous structure, gives wood a strong affinity towards moisture, throughout the whole lifecycle of the material. The moisture content in wood strongly influences its physical and mechanical properties, such as strength, stiffness, shape stability and durability properties. Further, it requires energy-intensive drying processes to bring wood to the desired moisture content for structural use.
The task of predicting the moisture content and transport of moisture in wood is challenging. It involves multiple phases, i.e., liquid water, gaseous vapor and the solid wood fibers, and it also engages a number of physical processes such as evaporation/condensation, adsorption/desorption, diffusion and seepage of the fluids, heat conduction and swelling/shrinkage of the wood fibers.
This thesis investigates the interplay between heat, moisture and their associated transport mechanisms in wood. The mechanics of the solid wood material is also studied. The primary goal of this thesis is to develop a thermodynamically consistent continuum model that is capable of predicting the macroscopic behavior of wood subjected to varying climate conditions and mechanical loading. The hybrid mixture theory is used todevelop a multiphase continuum model for wood, in which, at the macroscale, the wood material is considered to contain immiscible solid, liquid and gaseous phases. Constitutive relations are derived by fulfillment of the entropy inequality at the macroscopic scale. Interaction processes involving phase changes through sorption and evaporation/condensation, and diffusive transport mechanisms are described using the macroscale chemical potential as defined by the hybrid mixture theory.
The thesis starts with introductory chapters describing the overall properties of wood of importance in this context and the interactions between wood and moisture. A summary of the mixture theory as applied to this work is also presented. The thesis contains four attached papers, Paper I, Paper II, Paper III and Paper IV. In Paper I a model describing moisture transport and sorption processes in wood below the saturation point of the wood fibers is presented. The model is developed further, in Paper II and Paper III, to incorporate wood-water interactions below and above the fiber saturation point. Shrinkage/swelling and non-linear elastic deformations are also implemented. A drying test simulation of wood starting from the green state is performed and compared to experimental results. The model presented in Paper II and Paper III is complemented in Paper IV by considering damage associated with anisotropic cracking of the solid wood material. The phase field fracture modeling approach is used for this purpose. The resulting non-linear coupled partial differential equations governing the macroscopic behavior of the material are solved numerically using the finite element method. Simulations are performed to check the overall performance of the theoretical framework behind the proposed models and they are compared to experimental results for the identification of some of the material parameters of the models.
Abstract [sv]
Trä har använts som byggnadsmaterial under mycket lång tid. Utvecklingen av effektiva industriella förädlingsprocesser har gjort att nya produkter, såsom korslimmat trä, ständigt utvecklas. Användningen av trä i byggnader har vissa miljöfördelar, till exempel dess relativt låga koldioxidavtryck och dess kollagrande förmåga. Då trä är ett naturligt växande material så har det en hög initial fukthalt. Dessutom ger den kemiska sammansättningen av träets fibrer samt dess porösa struktur materialet en stark affinitet till fukt under hela materialets livscykel. Fukthalten i trä påverkar starkt dess fysiska och mekaniska egenskaper såsom styrka, styvhet, formstabilitet och beständighetsegenskaper. Vidare krävs det mycket energikrävande torkningsprocesser för att göra materialet lämpligt för användning i bärande konstruktioner.
Att beskriva en fysikaliskt stringent modell som beskriver fukthaltsfördelning och transport av fukt i trä är utmanande. Trä består bland annat av cellulosafibrer som i sin tur innehåller vattenånga och vatten i vätskefas. Ett antal olika fysikaliska processer såsom absorption/desorption, ångdiffusion, kapillärsugning, värmeledning och svällning/krympning av träfibrerna är centrala i detta sammanhang.
Denna avhandling undersöker samspelet mellan värme, fukt och tillhörande transportmekanismer i trä samt hur dessa processer kopplas till solidmekaniska töjningar och spänningar. Det primära målet med denna avhandling är att utveckla en termodynamiskt stringent kontinuummodell som kan förutsäga det makroskopiska beteendet hos trä som vid mekanisk belastning även utsätts för varierande fukt- och temperaturförhållanden. En så kallad blandningsteori (Hybrid Mixture Theory) används för att ta fram de styrande ekvationerna på makroskopisk nivå där materialet antas innehålla distinkta fasta, flytande och gasformiga faser. Konstitutiva relationer härleds genom att på olika sätt se till att entropi-olikheten på makroskopisk nivå alltid uppfylls. Interaktionsprocesser genom förångning/kondensation i materialet (sorption) och transportmekanismer beskrivs med hjälp av den makroskopiska kemiska potentialen så som den vanligen definieras i blandningsteorin.
Avhandlingen inleds med en övergripande beskrivning av träets egenskaper och dess uppbyggnad. Den använda teorins övergripande struktur och hur den tillämpas för trä i detta arbete presenteras också. Avhandlingen innehåller fyra bifogade artiklar, Paper I, Paper II, Paper III och Paper IV. I Paper I presenteras en modell som beskriver fukttransport och fuktfixering i fuktområden under fibermättnadspunkten. Modellen vidareutvecklas i Paper II och Paper III för att även kunna ta hänsyn till fukttransport och fuktfixering över fibermättnadspunkten. I detta sammanhang implementeras icke-linjära elastiska deformationer och dess koppling till krympning- och svällningsprocesser. Torksimuleringar av träprover som initialt är över fibermättnadspunkten utförs och jämförs med experimentella resultat.
Modellen som presenteras i Paper II och Paper III kompletteras i Paper IV där även sprickbildning av trä beaktas. En speciell typ av brottmekanikmodell används för detta ändamål (Phase-field crack model). De styrande icke-linjära kopplade partiella differentialekvationerna, som utgör modellen för det makroskopiska beteende hos trä i detta arbete, löses numeriskt med hjälp av finita element metoden. Diverse simuleringar utförs för att visa på modellens övergripande möjligheter. Olika aspekter av det föreslagna teoretiska ramverket testas med hjälp av numeriska simuleringar, där de teoretiska resultaten analyseras och jämförs med en rad experimentella observationer för identifiering av några av modellens materialparametrar.
Place, publisher, year, edition, pages
Växjö: Linnaeus University Press, 2023. p. 68
Series
Linnaeus University Dissertations ; 485
Keywords
Moisture transport, Coupled heat and moisture, Over-hygroscopic, Hybrid mixture theory, Mixture theory, Swelling, Hygro-mechanical, Non-linear elasticity, Large deformation, Phase field crack model, Anisotropic cracking, FEM, Numerical model, Norway spruce, Wood, Porous media
National Category
Wood Science Construction Management
Research subject
Technology (byts ev till Engineering), Forestry and Wood Technology
Identifiers
urn:nbn:se:lnu:diva-119621 (URN)10.15626/LUD.485.2023 (DOI)9789180820035 (ISBN)9789180820042 (ISBN)
Public defence
2023-03-24, N1017, Hus N, Växjö, 09:00 (English)
Opponent
Supervisors
2023-03-022023-03-012024-03-19Bibliographically approved