Understanding the emergence of function in complex reaction networks is a primary goal of systems chemistry and origin-of-life studies. Especially challenging is to create systems that simultaneously exhibit several emergent functions that can be independently tuned. In this work, a multifunctional complex reaction network of nucleophilic small molecule catalysts for the Morita-Baylis-Hillman (MBH) reaction is demonstrated. The dynamic system exhibited triggered self-resolution, preferentially amplifying a specific catalyst/product set out of a many potential alternatives. By utilizing selective reversibility of the products of the reaction set, systemic thermodynamically driven error-correction could also be introduced. To achieve this, a dynamic covalent MBH reaction based on adducts with internal H-transfer capabilities was developed. By careful tuning of the substituents, rate accelerations of retro-MBH reactions of up to four orders of magnitude could be obtained. This study thus demonstrates how efficient self-sorting of catalytic systems can be achieved through an interplay of several complex emergent functionalities.
A previous version of this manuscript has been deposited on a preprint server: https://doi.org/10.26434/chemrxiv.13604318.v1