lnu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Translation and modulation invariant Hilbert spaces
Linnaeus University, Faculty of Technology, Department of Mathematics.ORCID iD: 0000-0003-1921-8168
Indian Institute of Science, India.
HBNI, India.
Harish-Chandra Research Institute (HBNI), India.
2021 (English)In: Monatshefte für Mathematik (Print), ISSN 0026-9255, E-ISSN 1436-5081, Vol. 196, p. 389-398Article in journal (Refereed) Published
Abstract [en]

Let H be a Hilbert space of distributions on R-d which contains at least one non-zero element of the Feichtinger algebra S-0 and is continuously embedded in D'. If H is translation and modulation invariant, also in the sense of its norm, then we prove that H = L-2, with the same norm apart from a multiplicative constant.

Place, publisher, year, edition, pages
Springer, 2021. Vol. 196, p. 389-398
Keywords [en]
Modulation spaces, Feichtinger's minimization principle
National Category
Mathematics
Research subject
Natural Science, Mathematics
Identifiers
URN: urn:nbn:se:lnu:diva-106050DOI: 10.1007/s00605-021-01589-7ISI: 000674520300001Scopus ID: 2-s2.0-85110862297Local ID: 2021OAI: oai:DiVA.org:lnu-106050DiVA, id: diva2:1582349
Available from: 2021-07-30 Created: 2021-07-30 Last updated: 2022-05-17Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Toft, Joachim

Search in DiVA

By author/editor
Toft, Joachim
By organisation
Department of Mathematics
In the same journal
Monatshefte für Mathematik (Print)
Mathematics

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 32 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf