lnu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Synthesis of poly(2-methacryloyloxyethyl phosphorylcholine)-conjugated lipids and their characterization and surface properties of modified liposomes for protein interactions
Uppsala University, Sweden.
Univ Tokyo, Japan.
Univ Tokyo, Japan.
Univ Tokyo, Japan.
Show others and affiliations
2021 (English)In: Biomaterials Science, ISSN 2047-4830, E-ISSN 2047-4849, Vol. 9, no 17, p. 5854-5867Article in journal (Refereed) Published
Abstract [en]

Poly(ethylene glycol) (PEG) is frequently used for liposomal surface modification. However, as PEGylated liposomes are cleared rapidly from circulation upon repeated injections, substitutes of PEG are being sought. We focused on a water-soluble polymer composed of 2-methacryloyloxyethyl phosphorylcholine (MPC) units, and synthesized poly(MPC) (PMPC)-conjugated lipid (PMPC-lipid) with degrees of MPC polymerization ranging from 10 to 100 (calculated molecular weight: 3 to 30 kDa). In addition, lipids with three different alkyl chains, myristoyl, palmitoyl, and stearoyl, were applied for liposomal surface coating. We studied the interactions of PMPC-lipids with plasma albumin, human complement protein C3 and fibrinogen using a quartz crystal microbalance with energy dissipation, and found that adsorption of albumin, C3 and fibrinogen could be suppressed by coating with PMPC-lipids. In particular, the effect was more pronounced for PMPC chains with higher molecular weight. We evaluated the size, polydispersity index, surface charge, and membrane fluidity of the PMPC-lipid-modified liposomes. We found that the effect of the coating on the dispersion stability was maintained over a long period (98 days). Furthermore, we also demonstrated that the anti-PEG antibody did not interact with PMPC-lipids. Thus, our findings suggest that PMPC-lipids can be used for liposomal coating.

Place, publisher, year, edition, pages
Royal Society of Chemistry, 2021. Vol. 9, no 17, p. 5854-5867
National Category
Biochemistry and Molecular Biology
Research subject
Chemistry, Biochemistry
Identifiers
URN: urn:nbn:se:lnu:diva-106680DOI: 10.1039/d1bm00570gISI: 000674760600001PubMedID: 34286724Scopus ID: 2-s2.0-85113754352Local ID: 2021OAI: oai:DiVA.org:lnu-106680DiVA, id: diva2:1590088
Available from: 2021-09-01 Created: 2021-09-01 Last updated: 2023-01-24Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMedScopus

Authority records

Nilsson Ekdahl, Kristina

Search in DiVA

By author/editor
Nilsson Ekdahl, Kristina
By organisation
Department of Chemistry and Biomedical SciencesAdvanced Materials
In the same journal
Biomaterials Science
Biochemistry and Molecular Biology

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 218 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf