We reveal giant proximity-induced magnetism and valley-polarization effects in Janus Pt dichalcogenides (such as SPtSe), when bound to the europium oxide (EuO) substrate. Using first-principles simulations, it is surprisingly found that the charge redistribution, resulting from proximity with EuO, leads to the formation of two K and K' valleys in the conduction bands. Each of these valleys displays its own spin polarization and a specific spin texture dictated by broken inversion and time-reversal symmetries, and valley-exchange and Rashba splittings as large as hundreds of meV. This provides a platform for exploring spin-valley physics in low-dimensional semiconductors, with potential spin transport mechanisms such as spin-orbit torques much more resilient to disorder and temperature effects.