lnu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
A Feynman-Kac type formula for the obstacle problem related to impulse control
Linnaeus University, Faculty of Technology, Department of Physics and Electrical Engineering.
(English)Manuscript (preprint) (Other (popular science, discussion, etc.))
Identifiers
URN: urn:nbn:se:lnu:diva-110616OAI: oai:DiVA.org:lnu-110616DiVA, id: diva2:1640330
Available from: 2022-02-24 Created: 2022-02-24 Last updated: 2024-10-24
In thesis
1. A Probabilistic Approach to Non-Markovian Impulse Control
Open this publication in new window or tab >>A Probabilistic Approach to Non-Markovian Impulse Control
2022 (English)Doctoral thesis, comprehensive summary (Other academic)
Alternative title[sv]
Studier av icke-Markovska impuls problem via verktyg från matematisk sannolikhetsteori
Abstract [en]

This thesis treats mathematical considerations that arise in relation to certain stochastic optimal control problems, in particular of switching and impulse type. Both of these problems are extensions of the well-known optimal stopping problem. The optimal stopping problem amounts to finding the optimal stopping rule for a payoff that evolves in a random manner. In this case the control is merely a stopping time, making it one of the most primitive stochastic control problems.

The control in the above-mentioned extensions of optimal stopping takes the formof a double sequence (𝜏𝑖, 𝜉𝑖), where 𝜏𝑖 are stopping times and 𝜉𝑖 are random variables. In the case of optimal switching, we switch "mode" at each stopping time 𝜏𝑖 according to the discrete random variable 𝜉𝑖, while in the case of impulse control these variables take values in a compact set and represent impulses with which we hit the system, causing it to "jump". As in the case of optimal stopping, the goal is to find a control that maximizes a pre-defined performance measure. Generally speaking, breaking control problems down into smaller ones is known as the Bellman principle, which we establish to be applicable in our settings.

The problem we consider in Paper 1 is an impulse problem, where on the one hand the control enters the volatility, and on the other our underlying system is non-Markovian. Paper 2 explores a Feynman-Kac type formula for the problem in Paper1. In short, we establish the classic correspondence between conditional expectations and partial differential equations. In this case, the conditional expectation in question is the expected profit for the impulse problem. Paper 3 treats a particular non-Markovian switching problem with signed costs. Paper 3 treats a particular non-Markovian switching problem with signed costs.

Abstract [sv]

Denna avhandling behandlar matematiska frågeställningar som uppstår i samband med stokastiska impuls-problem. Denna typ av problem är en generalising av det välkända optimala stopproblemet. Det optimala stopproblemet går ut på att hitta den optimala stoppregeln för en stokastisk process. I det här fallet är styrlagen en så kallad stopptid, vilket gör det till ett av de mest primitiva stokastiska styrproblemen.Styrlagarna hos impuls-problem är en dubbelföljd (𝜏𝑖, 𝜉𝑖), där 𝜏𝑖 är stopptider och 𝜉𝑖 är stokastiska variabler. Vid varje stopptid görs ett val ur den givna regler mängden hur systemet ska påverkas. Precis som i det optimala stopproblemet är målet att hitta en styrlag som maximerar ett på förhand givet mått. Problem som har en struktur så att de kan delas upp i mindre delproblem sägs uppfylla Bellmans princip. Om så är fallet för våra problem är en av frågeställningarna vi behandlar. I Artikel 1 behandlas ett impulsproblem där den underliggande dynamisken dels beror på historien och dels har en volatilitet som påverkas av styrlagen. Artikel 2 presenterar en så kallad Feynman-Kac-formel för problemet i Artikel 1. Närmare bestämt att den klassiska representationen av lösningar till partiella differential ekvationer via betingade väntevärden gäller. I detta fall representerar lösningen i den förväntade vinsten för impulsproblemet. Artikel 3 behandlar ett särskilt icke markoviskt problem med diskret reglermängd och positiva "kostnader".

Place, publisher, year, edition, pages
Linnaeus University Press, 2022. p. 13
Series
Linnaeus University Dissertations ; 437
Keywords
Stochastic optimal control, optimal stopping, optimal switching, impulse control, Snell envelope, obstacle problems, partial differential equation
National Category
Probability Theory and Statistics
Research subject
Mathematics, Mathematics
Identifiers
urn:nbn:se:lnu:diva-110617 (URN)9789189460652 (ISBN)9789189460669 (ISBN)
Public defence
2022-03-17, Newton, Hus C, Växjö, 10:15 (English)
Opponent
Supervisors
Available from: 2022-02-24 Created: 2022-02-24 Last updated: 2024-03-11Bibliographically approved

Open Access in DiVA

No full text in DiVA

Authority records

Jönsson, Johan

Search in DiVA

By author/editor
Jönsson, Johan
By organisation
Department of Physics and Electrical Engineering

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 123 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf