The anticoagulant vitamin K-dependent protein S (PS) circulates in plasma in two forms, 30% free and 70% being bound to the complement regulatory protein C4b-binding protein (C4BP). The major C4BP isoform consists of 7 α-chains and 1 β-chain (C4BPβ+), the chains being linked by disulfide bridges. PS binds to the β-chain with high affinity. In plasma, PS is in molar excess over C4BPβ+ and due to the high affinity, all C4BPβ+ molecules contain a bound PS. Taken together with the observation that PS-deficient patients have decreased levels of C4BPβ+, this raises the question of whether PS is important for secretion of the β-chain from the cell. To test this hypothesis, HEK293 cells were stably and transiently transfected with β-chain cDNA in combinations with cDNAs for PS and/or the α-chain. The concentration of β-chains in the medium increased after co-transfection with PS cDNA, but not by α-chain cDNA, suggesting secretion of the β-chains from the cells to be dependent on concomitant synthesis of PS, but not of the α-chains. Thus, β-chains that were not disulfide-linked to the α-chains were secreted in complex with PS, either as monomers or dimers. Pulse-chase demonstrated that the complexes between PS and β-chain were formed intracellularly, in the endoplasmic reticulum. In conclusion, our results demonstrate that successful secretion of β-chains depends on intracellular complex formation with PS, but not on the α-chains. This provides an explanation for the decreased β-chain levels observed in PS-deficient patients.