lnu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
The Baltic Sea from the present to future: microbial carbon & nutrient cycling in a changing climate
Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science. (Systems Biology of Microorganisms)ORCID iD: 0000-0002-2620-914X
2022 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Climate Change is caused by the accelerated increase of anthropogenic greenhousegas emissions to the atmosphere and affects all ecosystems on our planet. A resultof higher CO2 uptake by the oceans as well as an increase of heat trapped in theatmosphere leads to, for example acidification, stratification, sea-level rise, oxygenloss, and temperature increase of the earth’s waterbodies. The IntergovernmentalPanel on Climate Change (IPCC) predicts the earth’s surface temperature to risebetween 1.0-5.7°C by the year 2100 and ocean temperatures are predicted to rise byup to 2.0°C.This thesis focuses on the effects of environmental changes on microbes and theirfunctions in coastal Baltic Sea sediments and overlying bottom-waters. The studiesexamine potential effects of ongoing climate change in combination with coastaleutrophication, as well as long-term warming due to e.g. climate change within anatural fluctuating system and a laboratory based incubation experiment.Investigation of coastal sediment and overlying bottom-waters showed thatpotential future changes on bacterial communities due to eutrophication incombination with climate change relies on the water depth and oxygen supply. Inaddition, the study of a natural seasonal fluctuating and long-term artificially heatedcoastal bay (compared to an unaffected control bay) gave insights into how theecosystem might react to future climate change. On one hand, bottom waters in theheated bay showed decreased bacterial diversity, suspended seasonal patterns pluselevated and prolonged cyanobacterial blooming. On the other hand, surfacesediment communities in the heated bay had an altered microbial community withdecreased seasonal variation and higher diversity likely due to a shallowing ofgeochemical layers. Furthermore, increased energy production occurred althoughhigher stress RNA transcripts suggested that the microbial community’stemperature optima were below that of the water. Nevertheless, incubationexperiments showed that exposure to short-term elevated temperatures shifted thecontrol bay microbial community closer to that of the heated bay with a similarresponse on RNA level at higher temperatures (28 °C).In summary, this thesis provides new insights into ongoing and likely future climatechange effects on coastal microbial communities, which are key players for nutrientandenergy cycling of the marine ecosystem.

Abstract [sv]

De klimatförändringar som nu observeras orsakas av ökade utsläpp av växthusgaseroch förändringarna påverkar alla ekosystem på jorden. Uppvärmningen avatmosfären och upptaget av koldioxid i havet leder bland annat till havsförsurning,skiktning av vattenmassorna, ökad havsnivå, minskad syretillgång och ökadtemperatur i jordens vattensystem. Enligt IPCC:s (Intergovernmental Panel onClimate Change) prediktioner kommer luft- och vattentemperaturer att öka med1.0-5.7°C respektive 2.0°C till år 2100.Den här avhandlingen fokuserar på hur mikroorganismers diversitet och funktionpåverkas av klimatförändringar i kustnära sediment och bottenvatten i Östersjön. Ivissa av studierna undersöktes potentiella kombinationseffekter avklimatförändringar och eutrofiering. Medan andra studier fokuserade påklimateffekter i ett naturligt fluktuerande system som utsatts för långvariguppvärmning samt i laboratorieexperiment där mikroorganismerna utsattes för enmer tillfällig uppvärmning.Vid påverkan av eutrofiering och klimatförändringar visade undersökningarna isedimentet och i bottenvattnet att förändringar bland mikroorganismer vid dessaförhållanden regleras av vattendjup och syrgastillgång. Vidare gav studierna av enartificiellt långtidsuppvärmd men säsongsmässigt fluktuerande vik kunskap om hurekosystemet kommer påverkas av framtidens klimatförändringar (jämfört med enopåverkad referensvik). I bottenvattnet var diversiteten bland mikroorganismerlägre i den uppvärmda viken jämfört med i kontrollviken. Det var även mindresäsongsvariation och en ökad samt förlängd cyanobakterieblomning.Mikroorganismerna i sedimentet, å andra sidan, hade en förändradartsammansättning och minskad säsongsmässig variation samt en högre diversitetjämfört med mikroorganismerna i kontrollviken. Detta orsakas troligen av enförtätning av de geokemiska lagren i sedimentet. Vidare tyder resultaten på högreenergiproduktion i den uppvärmda viken och vissa RNA-transkript indikerar stressoch tillväxt i suboptimal temperatur bland mikroorganismerna i den uppvärmdaviken. Slutligen visade inkubationsexperimentet att det mikrobiella samhället frånkontrollviken förändrades till att mer likna samhället i den uppvärmda viken när deutsattes för uppvärmning med liknande RNA-signaler vid höga temperaturer.Mikroorganismer har en nyckelroll vad gäller närsalts- och energiflöden i det marinaekosystemet. Totalt sett illustrerar denna avhandling hur pågående och kommandeklimatförändringar påverkar kustnära mikrobiella samhällen och processer knutnatill dessa.

Abstract [de]

Der Klimawandel beeinflusst alle Ökosysteme unseres Planeten und wird durch den Anstiegder Konzentrationen an Treibhausgasen in der Atmosphäre verursacht und verstärkt. Diesresultiert zum Beispiel in der Versauerung des Wassers, Veränderung des Salzgehaltes,Stratifizierung des Wassers, Anstieg des Meeresspiegels, sowie Minderung desSauerstoffgehalts im Wasser. Das internationale Klimawandel Gremium (IPCC) berichtet,dass die Erdoberflächentemperatur bis zum Jahre 2100 zwischen 1.0-5.7 °C steigen wird,sowie ein Meerestemperatur Anstieg von bis zu 2 °C zu erwarten ist.In dieser Doktorarbeit wird der Effekt von Umweltveränderungen auf Mikroorganismen undderen Funktion in Küstensedimenten und den darüber liegenden Wasserschichten derOstsee untersucht. Die potentiellen Effekte von bereits auftretendem Klimawandel inKombination mit Eutrophierung, sowie der Effekt von Langzeiterwärmung in einem sichnatürlich saisonal wandelndem System und einem laborbasierten Inkubationsexperimentwerden analysiert.Im ersten Projekt wurden Sedimente untersucht, die zeigten, dass Veränderungen in dermikrobiellen Zusammensetzung in Kombination mit Eutrophierung und potentiellemKlimawandel abhängig von der Wassertiefe und dem Sauerstoffgehalt sind. Zusätzlichwurden Proben in einer künstlich erwärmten Bucht an der Küste der Ostsee genommen undmit einer Kontrollbucht verglichen, um Einsicht zu erlangen wie Küstenökosysteme auf denKlimawandel in Zukunft reagieren könnten. Einerseits haben die Untersuchungen dermikrobiellen Zusammensetzung des Wassers gezeigt, dass mit steigender Temperatur dieDiversität sinkt, die saisonale Zusammensetzung der Bakterien verschoben wird und eineverstärkte und länger anhaltende Cyanobakterienblüte auftritt. Andererseits konntenUntersuchungen des Oberflächensediments zeigen, dass die Diversität, sehr wahrscheinlichdurch eine Komprimierung der geochemischen Schichten, zunimmt. Des Weiteren war dieExpression von Genen des Energiemetabolismus erhöht, aber auch die der Gene, welche miterhöhtem Stress assoziiert sind. Das könnte darauf hindeuten, dass das Temperaturoptimumder Mikroorganismus unterhalb der Wassertemperatur lag. Die Inkubationsstudie konntezeigen, dass sogar kurze Temperaturanstiege in den Proben der Kontrollbucht zu einemWechsel in der mikrobiellen Zusammensetzung und der Exprimierung der Gene (mRNA)führten, sodass diese bei hohen Temperaturen (28 °C), die der künstlich erhitzten Buchtglichen.Zusammenfassend konnte diese Doktorarbeit einen Einblick geben, wie Mikroorganismenin Küstengewässern, die eine zentrale Rolle im Nährstoff- und Energiezyklus des marinenÖkosystems spielen, auf den Effekt des Klimawandels potentiell reagieren könnten.

Place, publisher, year, edition, pages
Linnaeus University Press, 2022. , p. 77
Series
Linnaeus University Dissertations ; 448
Keywords [en]
Climate change, coastal sediments, Baltic Sea, eutrophication, bacterial communities, 16S rRNA, metatranscriptomics, geochemical layers, diversity, nutrient- & energy cycling
Keywords [de]
Klimawandel, Küstensediment, Ostsee, Eutrophierung, Bakterielle Gemeinschaften, 16S rRNA., Metatranskriptome, Geochemische Schichten, Diversität, Nährstoff- & Energiezyklus.
Keywords [sv]
Klimatförändringar, bottensediment, kust, Östersjön, eutrofiering, mikrobiella samhällen, 16S rRNA, metatranskriptomik, geokemiska lager, diversitet, närsalts- och energiflöden
National Category
Ecology Microbiology Climate Research Environmental Sciences
Research subject
Ecology, Aquatic Ecology; Natural Science, Environmental Science
Identifiers
URN: urn:nbn:se:lnu:diva-111588ISBN: 9789189460904 (print)ISBN: 9789189460911 (electronic)OAI: oai:DiVA.org:lnu-111588DiVA, id: diva2:1653944
Public defence
2022-06-03, Ma135K Fullriggaren, Kalmar, 09:00 (English)
Opponent
Supervisors
Available from: 2022-04-25 Created: 2022-04-25 Last updated: 2023-05-02Bibliographically approved
List of papers
1. Interplay between eutrophication and climate warming on bacterial communities in coastal sediments differs depending on water depth and oxygen history
Open this publication in new window or tab >>Interplay between eutrophication and climate warming on bacterial communities in coastal sediments differs depending on water depth and oxygen history
Show others...
2021 (English)In: Scientific Reports, E-ISSN 2045-2322, Vol. 11, no 1, article id 23384Article in journal (Refereed) Published
Abstract [en]

Coastal aquatic systems suffer from nutrient enrichment, which results in accelerated eutrophication effects due to increased microbial metabolic rates. Climate change related prolonged warming will likely accelerate existing eutrophication effects, including low oxygen concentrations. However, how the interplay between these environmental changes will alter coastal ecosystems is poorly understood. In this study, we compared 16S rRNA gene amplicon based bacterial communities in coastal sediments of a Baltic Sea basin in November 2013 and 2017 at three sites along a water depth gradient with varying bottom water oxygen histories. The shallow site showed changes of only 1.1% in relative abundance of bacterial populations in 2017 compared to 2013, while the deep oxygen-deficient site showed up to 11% changes in relative abundance including an increase of sulfate-reducing bacteria along with a 36% increase in organic matter content. The data suggested that bacterial communities in shallow sediments were more resilient to seasonal oxygen decline, while bacterial communities in sediments subjected to long-term hypoxia seemed to be sensitive to oxygen changes and were likely to be under hypoxic/anoxic conditions in the future. Our data demonstrate that future climate changes will likely fuel eutrophication related spread of low oxygen zones.

Place, publisher, year, edition, pages
Nature Publishing Group, 2021
National Category
Microbiology
Research subject
Ecology, Microbiology
Identifiers
urn:nbn:se:lnu:diva-108663 (URN)10.1038/s41598-021-02725-x (DOI)000726116200055 ()34862412 (PubMedID)2-s2.0-85120918182 (Scopus ID)2021 (Local ID)2021 (Archive number)2021 (OAI)
Available from: 2021-12-17 Created: 2021-12-17 Last updated: 2022-09-15Bibliographically approved
2. Weakened resilience of benthic microbial communities in the face of climate change
Open this publication in new window or tab >>Weakened resilience of benthic microbial communities in the face of climate change
Show others...
2022 (English)In: ISME Communications, E-ISSN 2730-6151, Vol. 2, no 1, article id 21Article in journal (Refereed) Published
Abstract [en]

Increased ocean temperature associated with climate change is especially intensified in coastal areas and its influence on microbialcommunities and biogeochemical cycling is poorly understood. In this study, we sampled a Baltic Sea bay that has undergone 50years of warmer temperatures similar to RCP5-8.5 predictions due to cooling water release from a nuclear power plant. The systemdemonstrated reduced oxygen concentrations, decreased anaerobic electron acceptors, and higher rates of sulfate reduction.Chemical analyses, 16S rRNA gene amplicons, and RNA transcripts all supported sediment anaerobic reactions occurring closer tothe sediment-water interface. This resulted in higher microbial diversities and raised sulfate reduction and methanogenesistranscripts, also supporting increased production of toxic sulfide and the greenhouse gas methane closer to the sediment surface,with possible release to oxygen deficient waters. RNA transcripts supported prolonged periods of cyanobacterial bloom that mayresult in increased climate change related coastal anoxia. Finally, while metatranscriptomics suggested increased energyproduction in the heated bay, a large number of stress transcripts indicated the communities had not adapted to the increasedtemperature and had weakened resilience. The results point to a potential feedback loop, whereby increased temperatures mayamplify negative effects at the base of coastal biochemical cycling.

Place, publisher, year, edition, pages
Springer Nature, 2022
National Category
Microbiology Environmental Sciences
Research subject
Ecology, Microbiology; Natural Science, Environmental Science
Identifiers
urn:nbn:se:lnu:diva-110737 (URN)10.1038/s43705-022-00104-9 (DOI)2022 (Local ID)2022 (Archive number)2022 (OAI)
Funder
Swedish Research Council Formas, FR-2020/0008The Crafoord Foundation, 20170539Magnus Bergvall Foundation, 2019-03116
Available from: 2022-03-08 Created: 2022-03-08 Last updated: 2023-10-06Bibliographically approved
3. Long-term warming of Baltic Sea coastal waters affects bacterial communities in bottom water and sediments differently
Open this publication in new window or tab >>Long-term warming of Baltic Sea coastal waters affects bacterial communities in bottom water and sediments differently
Show others...
2022 (English)In: Frontiers in Microbiology, ISSN 1664-302X, E-ISSN 1664-302X, Vol. 13, article id 873281Article in journal (Refereed) Published
Abstract [en]

Coastal marine ecosystems are some of the most diverse natural habitats while being highly vulnerable in the face of climate change. The combination of anthropogenic influence from land and ongoing climate change will likely have severe effects on the environment, but the precise response remains uncertain. This study compared an unaffected “control” Baltic Sea bay to a “heated” bay that has undergone artificial warming from cooling water release from a nuclear power plant for ~50 years. This heated the water in a similar degree to IPCC SSP5-8.5 predictions by 2100 as natural systems to study temperature-related climate change effects. Bottom water and surface sediment bacterial communities and their biogeochemical processes were investigated to test how future coastal water warming alters microbial communities; shifts seasonal patterns, such as increased algae blooming; and influences nutrient and energy cycling, including elevated respiration rates. 16S rRNA gene amplicon sequencing and geochemical parameters demonstrated that heated bay bottom water bacterial communities were influenced by increased average temperatures across changing seasons, resulting in an overall Shannon's H diversity loss and shifts in relative abundances. In contrast, Shannon's diversity increased in the heated surface sediments. The results also suggested a trend toward smaller-sized microorganisms within the heated bay bottom waters, with a 30% increased relative abundance of small size picocyanobacteria in the summer (June). Furthermore, bacterial communities in the heated bay surface sediment displayed little seasonal variability but did show potential changes of long-term increased average temperature in the interplay with related effects on bottom waters. Finally, heated bay metabolic gene predictions from the 16S rRNA gene sequences suggested raised anaerobic processes closer to the sediment-water interface. In conclusion, climate change will likely alter microbial seasonality and diversity, leading to prolonged and increased algae blooming and elevated respiration rates within coastal waters.

Place, publisher, year, edition, pages
Frontiers Media S.A., 2022
Keywords
Climate change, marine waters, cyanobacteria, 16S rRNA gene amplicon sequencing, seasonal shifts
National Category
Ecology Bioinformatics and Systems Biology Microbiology
Research subject
Ecology, Aquatic Ecology
Identifiers
urn:nbn:se:lnu:diva-111585 (URN)10.3389/fmicb.2022.873281 (DOI)000815717200001 ()35755995 (PubMedID)2-s2.0-85133479426 (Scopus ID)2022 (Local ID)2022 (Archive number)2022 (OAI)
Available from: 2022-04-25 Created: 2022-04-25 Last updated: 2023-02-02Bibliographically approved
4. Climate change-related warming reduces thermal sensitivity and modifies metabolic activity of coastal benthic bacterial communities
Open this publication in new window or tab >>Climate change-related warming reduces thermal sensitivity and modifies metabolic activity of coastal benthic bacterial communities
Show others...
2023 (English)In: The ISME Journal, ISSN 1751-7362, E-ISSN 1751-7370, Vol. 17, p. 855-869Article in journal (Refereed) Published
Abstract [en]

Besides long-term average temperature increases, climate change is projected to result in a higher frequency of marine heatwaves. Coastal zones are some of the most productive and vulnerable ecosystems, with many stretches already under anthropogenic pressure. Microorganisms in coastal areas are central to marine energy and nutrient cycling and therefore, it is important to understand how climate change will alter these ecosystems. Using a long-term heated bay (warmed for 50 years) in comparison with an unaffected adjacent control bay and an experimental short-term thermal (9 days at 6–35 °C) incubation experiment, this study provides new insights into how coastal benthic water and surface sediment bacterial communities respond to temperature change. Benthic bacterial communities in the two bays reacted differently to temperature increases with productivity in the heated bay having a broader thermal tolerance compared with that in the control bay. Furthermore, the transcriptional analysis showed that the heated bay benthic bacteria had higher transcript numbers related to energy metabolism and stress compared to the control bay, while short-term elevated temperatures in the control bay incubation experiment induced a transcript response resembling that observed in the heated bay field conditions. In contrast, a reciprocal response was not observed for the heated bay community RNA transcripts exposed to lower temperatures indicating a potential tipping point in community response may have been reached. In summary, long-term warming modulates the performance, productivity, and resilience of bacterial communities in response to warming.

Place, publisher, year, edition, pages
Springer Nature, 2023
Keywords
Climate change, bacterial production, RNA-Seq., 16S rRNA gene amplicon sequencing, thermal performance, benthic zone
National Category
Bioinformatics and Systems Biology Microbiology Climate Research Ecology
Research subject
Ecology, Aquatic Ecology
Identifiers
urn:nbn:se:lnu:diva-111587 (URN)10.1038/s41396-023-01395-z (DOI)000959217900001 ()36977742 (PubMedID)2-s2.0-85151163130 (Scopus ID)
Note

Is included in the dissertation as a manuscript titled: Climate change related warming reduces thermal sensitivity of performance and metabolic plasticity of benthic zone bacterial communities

Available from: 2022-04-25 Created: 2022-04-25 Last updated: 2023-05-25Bibliographically approved

Open Access in DiVA

Comprehensive summary(20645 kB)181 downloads
File information
File name FULLTEXT01.pdfFile size 20645 kBChecksum SHA-512
9b913c92ec22b9b6d1fa564c64d1f79f3bb592595402769086eb379eef71ea20a784b592144408ddc2ac5a3cfd9ca8f07dca3b681e017b9557439d157367352b
Type fulltextMimetype application/pdf

Other links

Buy Book (SEK 160 + VAT and postage) lnupress@lnu.se

Authority records

Seidel, Laura

Search in DiVA

By author/editor
Seidel, Laura
By organisation
Department of Biology and Environmental Science
EcologyMicrobiologyClimate ResearchEnvironmental Sciences

Search outside of DiVA

GoogleGoogle Scholar
Total: 181 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 464 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf