lnu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Microalgal solutions in Nordic conditions: industries transition toward resource recovery?
Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science. (Marine phytoplankton ecology and applications)ORCID iD: 0000-0002-6332-6820
2022 (English)Doctoral thesis, comprehensive summary (Other academic)
Sustainable development
SDG 2: End hunger, achieve food security and improved nutrition, and promote sustainable agriculture, SDG 6: Ensure availability and sustainable management of water and sanitation for all, SDG 7: Ensure access to affordable, reliable, sustainable and modern energy for all, SDG 9: Build resilient infrastructure, promote inclusive and sustainable industrialization, and foster innovation, SDG 12: Ensure sustainable consumption and production patterns, SDG 13: Take urgent action to combat climate change and its impacts by regulating emissions and promoting developments in renewable energy, SDG 14: Conserve and sustainably use the oceans, seas and marine resources for sustainable development, SDG 17: Strengthen the means of implementation and revitalize the global partnership for sustainable development
Abstract [en]

Microalgal solutions can through photosynthesis recover greenhouse gas (CO2) and nutrients from industrial waste, reducing climate footprint and eutrophication. An added value to the process is algal biomass containing lipids, proteins, and carbohydrates with commercial potential for biofuel, feed, and fertilizer. Microalgal cultivation in Nordic conditions is challenged by strong seasonality in light and temperature that can compromise biomass stability. To make microalgal cultivation sustainable and competitive with conventional feedstock, large-scale outdoor cultivation using waste streams is necessary but limits control over seasonal fluctuations in environmental conditions. In this thesis, I used a polyculture approach in outdoor large-scale cultivations with industrial waste resources, to study biomass production and quality in an annual, seasonal, and diurnal perspective. Research focused on the biomass potential for nutrient recovery and carbon capture from industries, year around stability and quality. Production was tested in the South Baltic Region using a brackish water polyculture grown for five years in a green wall panel (GWP) fed with cement industry flue gas (CO2 source). In a second setup, a freshwater polyculture was cultivated seasonally in raceway ponds (RWP), with an additional waste resource from landfill leachate water (nitrogen source).  Stable biomass performance and CO2 recovery up to 10 g m-2 d-1 was achieved for five years over seasons in the GWP with high protein in autumn and winter, whereas lipids remained stable throughout the annual cycle. Laboratory experiments confirmed naturally occurring diurnal shifts in temperature as superior lipid boosters compared to conventional nitrogen limitation. Stability of overall performance could be explained by flue gas recirculation mode, lack of contamination and polyculture complementarity of the two green algal strains that dominated throughout the five years. The use of multiple waste streams in the RWP added complexity to the cultivation as leachate water composition varied, resulting in a diverse green algal polyculture. Seasonality in nitrogen recovery rate was explained by total nitrogen and light. Results indicate stability of biomass and resource recovery in Nordic conditions using local polycultures in large-scale outdoor cultivation and periods of lower biomass production can be compensated by high quality metabolites such as proteins and lipids. 

Abstract [sv]

Algbaserade lösningar kan genom fotosyntes återvinna växthusgas (CO2) och näringsämnen från industriellt avfall och på så vis minska klimatavtryck och övergödning. Algbiomassan kan dessutom bidra med ytterligare mervärde eftersom den innehåller fetter, proteiner och kolhydrater med kommersiell potential som biodrivmedel, foder och gödsel. Odling av mikroalger i nordiska förhållanden är utmanande på grund av stora säsongsmässiga förändringar i ljus och temperatur som kan äventyra biomassans stabilitet. För att nå hållbar och konkurrenskraftig odling av mikroalger krävs storskaliga utomhusodlingar där avfall används som resurs, vilket begränsar möjligheten att kontrollera säsongsmässiga förändringar av miljöfaktorer så som ljus och temperatur. I denna avhandling använder jag lokala mikroalgssamhällen i storskaliga utomhusodlingar med industriavfall som resurs för att undersöka produktion och kvalitet av algbiomassa i ett årligt, säsongsmässigt och dagligt perspektiv. Forskningen fokuserade på biomassans potential att återvinna näring och koldioxid från industrier, samt på stabilitet och kvalitet året om. Produktion undersöktes i den södra Östersjöregionen med hjälp av ett algsamhälle från brackvatten under en femårsperiod i gröna väggpaneler (GWP) som matades med rökgas från cementindustri som koldioxidkälla. I en andra uppsättning odlades ett sötvattens-algsamhälle säsongsmässigt i raceway-dammar (RWP) med ytterligare en avfallsresurs i form av lakvatten från en deponi (kvävekälla).  Stabil prestanda av biomassan och ett koldioxidupptag upp till 10 g m-2 d-1 uppmättes under fem år över säsonger i GWP med högt proteininnehåll under höst och vinter medan fetterna var stabila året om. Laboratorieexperiment bekräftade att naturligt förekommande dagliga skiftningar i temperatur var mer effektiva än den konventionella metoden kvävebegränsning. Stabilitet och genomgående prestanda av biomassan påverkades av recirkulering av rökgas, brist på kontaminering och kompletterande egenskaper hos de två grönalger som dominerade under de fem åren. Användningen av flertalet avfallsströmmar i RWP ökade komplexiteten i odlingssystemet eftersom lakvattnet skiftade i sammansättning vilket resulterade i ett grönt algsamhälle med hög diversitet. Säsongsmässighet i kväveåtervinningshastighet kunde förklaras av totalkväve och ljusförhållanden. Resultaten indikerar stabilitet av biomassan och resursåtervinning i nordiska förhållanden genom att använda algsamhällen med flera arter i storskaliga utomhusodlingar som under perioder av lägre biomassaproduktion kan kompensera med högkvalitativa metaboliter så som proteiner och fetter.  

Place, publisher, year, edition, pages
Växjö: Linnaeus University Press, 2022. , p. 146
Series
Linnaeus University Dissertations ; 450
Keywords [en]
Microalgae, algal cultivation, polyculture, resource recovery, seasonal variation, industrial partnership, CO2 mitigation, nitrogen removal, community composition
National Category
Ecology Microbiology Environmental Sciences
Research subject
Natural Science, Ecology; Technology (byts ev till Engineering), Environmental Biotechnology; Natural Science, Environmental Science; Ecology, Aquatic Ecology; Ecology, Microbiology
Identifiers
URN: urn:nbn:se:lnu:diva-111602ISBN: 9789189460966 (print)ISBN: 9789189460973 (electronic)OAI: oai:DiVA.org:lnu-111602DiVA, id: diva2:1654248
Public defence
2022-05-20, Lapis VI1158, hus Vita, Norra Kajplan 6, Kalmar, 09:30 (English)
Opponent
Supervisors
Projects
ALGOLANDAvailable from: 2022-04-28 Created: 2022-04-26 Last updated: 2025-03-10Bibliographically approved
List of papers
1. Performance and biomass stability of 5-year outdoor microalgal cultivation for CO2 removal from cement flue gas
Open this publication in new window or tab >>Performance and biomass stability of 5-year outdoor microalgal cultivation for CO2 removal from cement flue gas
Show others...
(English)Manuscript (preprint) (Other academic)
Keywords
Microalgal cultivation, polyculture, CO2 recovery, flue gas, outdoor, Nordic conditions, long-term, large-scale, seasonal changes, production stability, biomass quality, industry partnership
National Category
Ecology
Research subject
Natural Science, Ecology; Natural Science, Environmental Science; Technology (byts ev till Engineering)
Identifiers
urn:nbn:se:lnu:diva-111597 (URN)
Projects
ALGOLAND
Available from: 2022-04-26 Created: 2022-04-26 Last updated: 2022-06-09Bibliographically approved
2. Functional Diversity Facilitates Stability Under Environmental Changes in an Outdoor Microalgal Cultivation System
Open this publication in new window or tab >>Functional Diversity Facilitates Stability Under Environmental Changes in an Outdoor Microalgal Cultivation System
Show others...
2021 (English)In: Frontiers in Bioengineering and Biotechnology, E-ISSN 2296-4185, Vol. 9, article id 651895Article in journal (Refereed) Published
Abstract [en]

Functionally uniform monocultures have remained the paradigm in microalgal cultivation despite the apparent challenges to avoid invasions by other microorganisms. A mixed microbial consortium approach has the potential to optimize and maintain biomass production despite of seasonal changes and to be more resilient toward contaminations. Here we present a 3-year outdoor production of mixed consortia of locally adapted microalgae and bacteria in cold temperate latitude. Microalgal consortia were cultivated in flat panel photobioreactors using brackish Baltic Sea water and CO2 from a cement factory (Degerhamn, Cementa AB, Heidelberg Cement Group) as a sustainable CO2 source. To evaluate the ability of the microbial consortia to maintain stable biomass production while exposed to seasonal changes in both light and temperature, we tracked changes in the microbial community using molecular methods (16S and 18S rDNA amplicon sequencing) and monitored the biomass production and quality (lipid, protein, and carbohydrate content) over 3 years. Despite changes in environmental conditions, the mixed consortia maintained stable biomass production by alternating between two different predominant green microalgae (Monoraphidium and Mychonastes) with complementary tolerance to temperature. The bacterial population was few taxa co-occured over time and the composition did not have any connection to the shifts in microalgal taxa. We propose that a locally adapted and mixed microalgal consortia, with complementary traits, can be useful for optimizing yield of commercial scale microalgal cultivation.

Place, publisher, year, edition, pages
Frontiers Media S.A., 2021
Keywords
microalgal cultivation, functional diversity, microbial consortium, sustainability, environmental changes, algal productivity, thermal regime, polyculture
National Category
Fish and Aquacultural Science Ecology
Research subject
Ecology, Aquatic Ecology
Identifiers
urn:nbn:se:lnu:diva-103703 (URN)10.3389/fbioe.2021.651895 (DOI)000647453400001 ()33968914 (PubMedID)2-s2.0-85105387394 (Scopus ID)
Available from: 2021-06-02 Created: 2021-06-02 Last updated: 2023-02-06Bibliographically approved
3. Seasonal nitrogen removal in an outdoor polyculture at Nordic conditions
Open this publication in new window or tab >>Seasonal nitrogen removal in an outdoor polyculture at Nordic conditions
Show others...
(English)Manuscript (preprint) (Other academic)
Keywords
Microalgal cultivation, polyculture, Nordic conditions, outdoor, biomass quality, seasonal changes, nitrogen removal, leachate water, flue gas, industry partnership
National Category
Ecology
Research subject
Natural Science, Ecology; Natural Science, Environmental Science
Identifiers
urn:nbn:se:lnu:diva-111601 (URN)
Projects
ALGOLAND
Available from: 2022-04-26 Created: 2022-04-26 Last updated: 2022-06-09Bibliographically approved
4. Boosting algal lipids: Diurnal shifts in temperature exceed the effects of nitrogen limitation
Open this publication in new window or tab >>Boosting algal lipids: Diurnal shifts in temperature exceed the effects of nitrogen limitation
2019 (English)In: Engineering Reports, E-ISSN 2577-8196, Vol. 1, no 5, p. 1-13, article id e12067Article in journal (Refereed) Published
Abstract [en]

Algal lipids have been observed to increase during autumn conditions (low light, low mean temperature, and diurnal shift in temperature), in large‐scale outdoor photobioreactors. In this paper, we tested the effect of diurnal shifts in temperature (DS) and nitrogen (N) limitation on algal BODIPY lipid fluorescence cell−1 (BPF). We show that DS increased BPF in algal biomass up to 28% more compared with N limitation, the standard stressor to boost neutral lipids (NL) in commercial production. Biomass yield was constant, regardless the DS range (6°C‐12°C). A combination of both stressors had an additive effect on algal BPF. A polyculture from an outdoor photobioreactor was cultivated under controlled conditions at different regimes of light, temperature, and N limitation. DSs were mimicking autumn conditions with a difference of 6°C, 10°C, and 12°C between day and night. Biomass and BPF were monitored over one to two weeks, and NLs were stained with a fluorescent marker (BODIPY) and detected with flow cytometry. Results indicate that, during autumn conditions, daily heating and cooling processes in contrast to N limitation do not challenge the trade‐off between biomass production and BPF. During seasons when day temperature is still relatively high, DSs are rapid BPF boosting stressors, while N limitation could be applied to boost BPF further during other seasons.

Place, publisher, year, edition, pages
John Wiley & Sons, 2019
National Category
Biological Sciences
Research subject
Ecology, Aquatic Ecology
Identifiers
urn:nbn:se:lnu:diva-91463 (URN)10.1002/eng2.12067 (DOI)000674328500003 ()2-s2.0-85094556076 (Scopus ID)
Available from: 2020-01-31 Created: 2020-01-31 Last updated: 2023-02-09Bibliographically approved

Open Access in DiVA

Comprehensive summary(3321 kB)393 downloads
File information
File name FULLTEXT01.pdfFile size 3321 kBChecksum SHA-512
ed24068162eed0eafc42dd67f92b79ecf0579ad37d9e4db7ba8f13e63dd71985f5ed6b6545eb772ca758d7990df2537e5de1605419856df8cb64bb4923d60687
Type fulltextMimetype application/pdf

Other links

Buy Book (SEK 400 + VAT and postage) lnupress@lnu.se

Search in DiVA

By author/editor
Mattsson, Lina
By organisation
Department of Biology and Environmental Science
EcologyMicrobiologyEnvironmental Sciences

Search outside of DiVA

GoogleGoogle Scholar
Total: 401 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 1782 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf