Enhanced skyrmion stability due to exchange frustrationShow others and affiliations
2017 (English)In: Scientific Reports, E-ISSN 2045-2322, Vol. 7, article id 12299
Article in journal (Refereed) Published
Abstract [en]
Skyrmions are localized, topologically non-trivial spin structures which have raised high hopes for future spintronic applications. A key issue is skyrmion stability with respect to annihilation into the ferromagnetic state. Energy barriers for this collapse have been calculated taking only nearest neighbor exchange interactions into account. Here, we demonstrate that exchange frustration can greatly enhance skyrmion stability. We focus on the prototypical film system Pd/Fe/Ir(111) and use an atomistic spin model parametrized from first-principles calculations. We show that energy barriers and critical fields of skyrmion collapse as well as skyrmion lifetimes are drastically enhanced due to frustrated exchange and that antiskyrmions are metastable. In contrast an effective nearest-neighbor exchange model can only account for equilibrium properties of skyrmions such as their magnetic field dependent profile or the zero temperature phase diagram. Our work shows that frustration of long range exchange interactions – a typical feature in itinerant electron magnets – is a route towards enhanced skyrmion stability even in systems with a ferromagnetic ground state.
Place, publisher, year, edition, pages
Springer Nature, 2017. Vol. 7, article id 12299
National Category
Condensed Matter Physics
Research subject
Physics, Condensed Matter Physics
Identifiers
URN: urn:nbn:se:lnu:diva-116401DOI: 10.1038/s41598-017-12525-xISI: 000411677500003Scopus ID: 2-s2.0-85030030341OAI: oai:DiVA.org:lnu-116401DiVA, id: diva2:1697219
Note
Correction published in: von Malottki, S., Dupe, B., Bessarab, P. F., Delin, A., & Heinze, S. (2019). Enhanced skyrmion stability due to exchange frustration (vol 7, 12299, 2017). SCIENTIFIC REPORTS, 9. doi:10.1038/s41598-019-44360-7
2022-09-202022-09-202022-10-17Bibliographically approved