This paper presents a brief overview of vibration-based structural damage detection studies that are based on machine learning (ML) in civil engineering structures. The review includes both parametric and nonparametric applications of ML accompanied with analytical and/or experimental studies. While the ML tools help the system learn from the data fed into, the computer enhances the task with the learned information without any programming on how to process the relevant data. As such, the performance level of ML-based damage identification methodologies depends on the feature extraction and classification steps, especially on the classifier choices for which the characteristic nature of the acceleration signals is recorded in a feasible way. Yet, there are several issues to be discussed about the existing ML procedures for both parametric and nonparametric applications, which are presented in this paper.