Vitamin B-1 (thiamin) is primarily produced by bacteria, phytoplankton and fungi in aquatic food webs and transferred to higher trophic levels by ingestion. However, much remains unknown regarding the dynamics this water-soluble, essential micronutrient; e.g. how it relates to macronutrients (carbon, nitrogen and phosphorous). Nutrient limitation has been found to be related to periods of thiamin deficiency as well as in models. Hence, thiamin transfer to copepods from three phytoplankton species from different taxa was investigated, along with the effect of various nutrient regimes on thiamin content. Nutrient levels did not affect thiamin content of phytoplankton nor the transfer to copepods. Instead, phytoplankton displayed species-specific thiamin and macronutrient contents and whilst a higher thiamin content in the prey lead to higher levels in copepods, the transfer was lower for Skeletonema compared to Dunaliella and Rhodomonas. In all, thiamin transfer to copepods is not only dependent on thiamin content of the prey, but also the edibility and/or digestibility is of importance. Thiamin is essential for all organisms, and this study offers insights into the limited effect of macronutrients on the dynamics and transfer of thiamin in the aquatic food webs.