lnu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
In vivo properties of neural stem cells after transplantation into the rat brain-Studies of phenotypic differentiation and functional integration using cell-specific labelling and electrophysiological techniques
Lund University, Sweden.ORCID iD: 0000-0001-5316-7726
2002 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [sv]

Forskning om stamceller har fått mycket uppmärksamhet de senaste åren. Mycket av intresset avspeglar möjligheten att använda denna typ av celler som en terapi för att bota olika sjukdomar. En stam cell från hjärnan är en cell som har förmåga att dela sig symmetriskt, varvid två kopior bildas eller asymmetriskt, vilket ger upphov till en ny stam cell samt en progenitorcell. En progenitorcell har ett förutbestämt öde, att utvecklas till en nervcell eller en stödjecell (gliacell), samt förmågan att dela sig under en kortare period. Stamceller som har isolerats från den embryonala och vuxna hjärnan, kan odlas i cellkultur under specifika betingelser. Egenskaperna hos de isolerade stam- och progenitorcellerna för nerv- och gliaceller (tillsammans kallade neurala celler) har studerats främst i cellodling (in vitro) och efter transplantation (in vivo), och resultaten har varit betydelsefulla för kartläggandet av neurobiologiska förlopp under utvecklingen. Då neurala stam-och progenitor celler kan mångfaldigas och modifieras i cellodling betraktas de också som en möjlig celltyp för framtida klinisk tillämpning med celltransplantation, till exempel för patienter med Parkinsons sjukdom. En eventuell användning av stamceller i denna typ av applikation kräver grundläggande experimentella försök för att dokumentera cellernas egenskaper och framförallt förmåga att funktionellt integrera med värdhjärnan efter transplantation.

Mitt avhandlingsarbete handlar om karakterisering av sådana embryonala neurala stam- och progenitor celler efter transplantation till hjärnan på råtta. Ett antal olika metoder användes för att detektera cellerna efter implantationen, bland annat reporter genen Green Fluorescent Protein (GFP). I det första delarbetet optimerades metoden för inmärkning av neurala celler med reporter genen, och då primärt i syfte att uttryckas efter transplantation. Då GFP är distribuerad i hela cytoplasman, visualiseras hela morfologin av cellerna. I de två följande delarbetena beskrivs hur humana neurala cell linjer etablerade från embryonal vävnad, kan odlas som så kallade neurosfärer och expanderas upp till ett år i närvaro av mitogena tillväxtfaktorer, med bibehållen förmåga att mogna till nerv- och gliaceller. Dessa cell linjer överlever väl upp till över ett år efter transplantation till hjärnan på nyfödda och vuxna råttor. Cellerna analyserades in vivo med human-specifika generella och phenotypiska markörer, samt med hjälp av reporter genen GFP. Efter transplantation till de neurogena områden, d v s den subventrikulära zonen och hippocampus, migrerar de humana cellerna och differentierar till region-specifika neuron likt värdhjärnans nervcells-progenitorer. Efter implantation i det icke-neurogena striatum migrerar cellerna, identifierade som gliaprogenitorer, över långa distanser i vit vävnad. I striatum utvecklades en signifikant del av de transplanterade cellerna till nervceller, med projicerar till korrekta målområden. En del av de transplanterade humana cellerna mognade till astrocyter och oligodendrocyter, vilket innebär att de humana celllinjerna är multipotenta även in vivo. GFP-positiva nervceller hade morfologiska egenskaper som är karakteristiska för mogna nervceller, såsom rikt förgrenade dendriter med spines. Trots kapacitet att migrera och differentiera till nerv och- gliaceller efter transplantation, kvarstår frågan till vilken grad de humana progenitorerna kan integrera funktionellt med värdhjärnan.

I de två sista delarbetena studerades den immortaliserade neurala cellinjen RN33B, som är genererad från embryonala hjärnstamsceller i råtta. Den temperaturkänsliga immortaliseringsgenen gör att cellerna delar sig vid 33°C i cell odling, men vid 37°C mognar cellerna och då främst till nervceller in vitro. RN33B- cellerna märktes med reporter genen GFP (se ovan) in vitro, och sedan studerades cellernas kapacitet att utvecklas till regionspecifika nervceller samt att integrera funktionellt med värdhjärnan studerades morfologiskt efter transplantation till hjärnan på nyfödda råttor. RN33B cellerna överlevde väl upp till 4 månader efter transplantationen och bildade både nervceller och gliaceller. Vidare visade den morfologiska analysen att RN33B-cellerna har en exceptionell förmåga att bilda pyramidala nervceller i cortex och hippocampus, med projektioner till korrekta målområden. Projektionerna studerades genom injektioner av Fluorogold (FG), som transporteras från projektionerna i målområdet till cellkroppen. Slutligen visade vi, med hjälp av så kallad patch-clamp teknik, att transplanterade GFP-positiva RN33B pyramidceller i cortex har normala elektrofysiologiska egenskaper samt tar emot information från omkringliggande celler i värdhjärnan. Sammanfattningsvis visar studierna i denna avhandling att neurala stamceller överlever transplantation, och utmognar till nerv- och gliaceller. Vidare så utvecklade nervcellerna projektioner som nådde till korrekta målområden, samt integrerade funktionellt med värdhjärnan. Dessa egenskaper i kombination med möjligheten att mångfaldiga de neurala celltyperna in vitro är mycket intressanta för fortsatta studier rörande funktionell integration efter transplantation och utveckling av celler för transplantation i djurmodeller av neurodegenerativa sjukdomar.

Place, publisher, year, edition, pages
Lunds universitet , 2002. , p. 75
National Category
Neurosciences
Research subject
Natural Science, Biomedical Sciences
Identifiers
URN: urn:nbn:se:lnu:diva-120735Libris ID: 8433085ISBN: 9162852132 (print)OAI: oai:DiVA.org:lnu-120735DiVA, id: diva2:1756973
Opponent
Available from: 2023-05-17 Created: 2023-05-15 Last updated: 2023-05-17Bibliographically approved
List of papers
1. The use of a recombinant lentiviral vector for ex vivo gene transfer into the rat CNS
Open this publication in new window or tab >>The use of a recombinant lentiviral vector for ex vivo gene transfer into the rat CNS
Show others...
2000 (English)In: NeuroReport, ISSN 0959-4965, E-ISSN 1473-558X, Vol. 11, no 18, p. 3973-3977Article in journal (Refereed) Published
Abstract [en]

A major obstacle in ex vivo gene transfer has been the loss of transgene expression soon after implantation of the grafted transduced cells. Recently, a lentiviral vector system has been developed which has proven to express high levels of transgenes in vivo after direct injection into the tissue. In this study, we have investigated the use of such a vector for ex vivo gene transfer to the brain. A number of neural cell types were found to be permissive to transduction by the lentiviral vector in vitro and a majority of them expressed the transgene after transplantation to the rat brain. Transgene expression was detected up to 8 weeks post-grafting. These findings suggest that recombinant lentiviral vectors may be used for further development of ex vivo gene therapy protocols to the CNS.

Place, publisher, year, edition, pages
Lippincott Williams & Wilkins, 2000
National Category
Neurosciences
Research subject
Natural Science, Biomedical Sciences
Identifiers
urn:nbn:se:lnu:diva-120734 (URN)10.1097/00001756-200012180-00014 (DOI)
Available from: 2023-05-15 Created: 2023-05-15 Last updated: 2023-05-15Bibliographically approved
2. Transplantation of Human Neural Progenitor Cells into the Neonatal Rat Brain: Extensive Migration and Differentiation with Long-Distance Axonal Projections
Open this publication in new window or tab >>Transplantation of Human Neural Progenitor Cells into the Neonatal Rat Brain: Extensive Migration and Differentiation with Long-Distance Axonal Projections
Show others...
2002 (English)In: Experimental Neurology, ISSN 0014-4886, E-ISSN 1090-2430, Vol. 173, no 1, p. 1-21Article in journal (Refereed) Published
Abstract [en]

Here we examined the ability of human neural progenitors from the embryonic forebrain, expanded for up to a year in culture in the presence of growth factors, to respond to environmental signals provided by the developing rat brain. After survival times of up to more than a year after transplantation into the striatum, the hippocampus, and the subventricular zone, the cells were analyzed using human-specific antisera and the reporter gene green fluorescent protein (GFP). From grafts implanted in the striatum, the cells migrated extensively, especially within white matter structures. Neuronal differentiation was most pronounced at the striatal graft core, with axonal projections extending caudally along the internal capsule into mesencephalon. In the hippocampus, cells migrated throughout the entire hippocampal formation and into adjacent white matter tracts, with differentiation into neurons both in the dentate gyrus and in the CA1–3 regions. Directed migration along the rostral migratory stream to the olfactory bulb and differentiation into granule cells were observed after implantation into the subventricular zone. Glial differentiation occurred at all three graft sites, predominantly at the injection sites, but also among the migrating cells. A lentiviral vector was used to transduce the cells with the GFP gene prior to grafting. The reporter gene was expressed for at least 15 weeks and the distribution of the gene product throughout the entire cytoplasmic compartment of the expressing cells allowed for a detailed morphological analysis of a portion of the grafted cells. The extensive integration and differentiation of in vitro-expanded human neural progenitor cells indicate that multipotent progenitors are capable of responding in a regionally specific manner to cues present in the developing rat brain.

Place, publisher, year, edition, pages
Elsevier, 2002
National Category
Neurosciences
Research subject
Natural Science, Biomedical Sciences
Identifiers
urn:nbn:se:lnu:diva-120728 (URN)10.1006/exnr.2001.7750 (DOI)000173388300001 ()11771935 (PubMedID)2-s2.0-0036144943 (Scopus ID)
Available from: 2023-05-15 Created: 2023-05-15 Last updated: 2023-05-15Bibliographically approved
3. Migration patterns and phenotypic differentiation of long-term expanded human neural progenitor cells after transplantation into the adult rat brain
Open this publication in new window or tab >>Migration patterns and phenotypic differentiation of long-term expanded human neural progenitor cells after transplantation into the adult rat brain
2002 (English)In: Developmental Brain Research, ISSN 0165-3806, E-ISSN 1872-6755, Vol. 134, no 1-2, p. 123-141Article in journal (Refereed) Published
Abstract [en]

We have examined long-term growth-factor expanded human neural progenitors following transplantation into the adult rat brain. Cells, obtained from the forebrain of a 9-week old fetus, propagated in the presence of epidermal growth factor, basic fibroblast growth factor, and leukemia inhibitory factor were transplanted into the striatum, subventricular zone (SVZ), and hippocampus. At 14 weeks, implanted cells were identified using antisera recognizing human nuclei and the reporter gene green fluorescent protein. Different migration patterns of the grafted cells were observed: (i) target-directed migration of doublecortin (DCX, a marker for migrating neuroblasts)-positive cells along the rostral migratory stream to the olfactory bulb and into the granular cell layer following transplantation into the SVZ and hippocampus, respectively; (ii) non-directed migration of DCX-positive cells in the grey matter in striatum and hippocampus, and (iii) extensive migration of above all nestin-positive/DCX-negative cells within white matter tracts. At the striatal implantation site, neuronal differentiation was most pronounced at the graft core with axonal projections extending along the internal capsule bundles. In the hippocampus, cells differentiated primarily into interneurons both in the dentate gyrus and in the CA1-3 regions as well as into granule-like neurons. In the striatum and hippocampus, a significant proportion of the grafted cells differentiated into glial cells, some with long processes extending along white matter tracts. Although the survival time was over 3 months in the present study a large fraction of the grafted cells remained undifferentiated in a stem or progenitor cell stage as revealed by the expression of nestin and/or GFAP.

Place, publisher, year, edition, pages
Elsevier, 2002
National Category
Neurosciences
Research subject
Natural Science, Biomedical Sciences
Identifiers
urn:nbn:se:lnu:diva-120727 (URN)10.1016/s0165-3806(01)00330-3 (DOI)000175354200013 ()11947943 (PubMedID)2-s2.0-0037204595 (Scopus ID)
Available from: 2023-05-15 Created: 2023-05-15 Last updated: 2023-05-15Bibliographically approved
4. Differentiation of the RN33B Cell Line into Forebrain Projection Neurons after Transplantation into the Neonatal Rat Brain
Open this publication in new window or tab >>Differentiation of the RN33B Cell Line into Forebrain Projection Neurons after Transplantation into the Neonatal Rat Brain
Show others...
2002 (English)In: Experimental Neurology, ISSN 0014-4886, E-ISSN 1090-2430, Vol. 175, no 2, p. 370-387Article in journal (Refereed) Published
Abstract [en]

The rat neural cell line RN33B has a remarkable ability to undergo region-specific neuronal differentiation after transplantation into the CNS. To further study its neurogenic properties in vivo, we used a recombinant lentiviral vector to genetically label the cells with the Green Fluorescent Protein (GFP) gene before implantation into the striatum/cortex, hippocampus, or mesencephalon of newborn rats. Three weeks after implantation, about 1-2% of the GFP-expressing cells had developed morphologies typical of neurons, astrocytes, or oligodendrocytes, the rest remained as either immature or undifferentiated nestin-positive cells. At 15-17 weeks postgrafting, the immature cells had disappeared in most graft recipients and only cells with neuronal or glial morphologies remained in similar numbers as at 3 weeks. The GFP distributed throughout the expressing cells, revealing fine morphological details, including dendrites with spines and extensive axonal projections. In all forebrain regions, the grafted cells differentiated into neurons with morphologies characteristic for each site, including large numbers of pyramidal-like cells in the cortex and the hippocampus, giving rise to dense projections to normal cortical target regions and to the contralateral hippocampus, respectively. In lower numbers, it was also possible to identify GFP-positive granulelike cells in the hippocampus, as well as densely spiny neurons in the striatum. In the mesencephalon by contrast, cells with astrocytic features predominated. The ability of the grafted RN33B cells to undergo region-specific differentiation into highly specialized types of forebrain projection neurons and establish connections with appropriate targets suggests that cues present in the microenvironment of the neonatal rat brain can effectively guide the development of immature progenitors, also in the absence of ongoing neurogenesis.

Place, publisher, year, edition, pages
Elsevier, 2002
National Category
Neurosciences
Research subject
Natural Science, Biomedical Sciences
Identifiers
urn:nbn:se:lnu:diva-120729 (URN)10.1006/exnr.2002.7888 (DOI)000176205600006 ()12061867 (PubMedID)2-s2.0-0036285473 (Scopus ID)
Available from: 2023-05-15 Created: 2023-05-15 Last updated: 2023-05-15Bibliographically approved

Open Access in DiVA

No full text in DiVA

Authority records

Englund Johansson, Ulrica

Search in DiVA

By author/editor
Englund Johansson, Ulrica
Neurosciences

Search outside of DiVA

GoogleGoogle Scholar

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 31 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf