lnu.sePublications
Planned maintenance
A system upgrade is planned for 10/12-2024, at 12:00-13:00. During this time DiVA will be unavailable.
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
The Hamiltonian path integrand for the charged particle in a constant magnetic field as white noise distribution
University of Kaiserslautern, Germany.ORCID iD: 0000-0002-8400-0416
University of Kaiserslautern, Germany.
2015 (English)In: Infinite Dimensional Analysis Quantum Probability and Related Topics, ISSN 0219-0257, Vol. 18, no 2, article id 1550010Article in journal (Refereed) Published
Abstract [en]

The concepts of Hamiltonian Feynman integrals in white noise analysis are used to realize as the first velocity-dependent potential of the Hamiltonian Feynman integrand for a charged particle in a constant magnetic field in coordinate space as a Hida distribution. For this purpose the velocity-dependent potential gives rise to a generalized Gauss kernel. Besides the propagators, the generating functionals are obtained. 

Place, publisher, year, edition, pages
World Scientific, 2015. Vol. 18, no 2, article id 1550010
National Category
Probability Theory and Statistics
Research subject
Mathematics, Mathematics
Identifiers
URN: urn:nbn:se:lnu:diva-124552DOI: 10.1142/S0219025715500101ISI: 000356062300002Scopus ID: 2-s2.0-84930895398OAI: oai:DiVA.org:lnu-124552DiVA, id: diva2:1802863
Available from: 2023-10-06 Created: 2023-10-06 Last updated: 2023-10-17Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Bock, Wolfgang

Search in DiVA

By author/editor
Bock, Wolfgang
In the same journal
Infinite Dimensional Analysis Quantum Probability and Related Topics
Probability Theory and Statistics

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 18 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf