In this paper, we study the self-intersection local times of multifractional Brownian motion (mBm) in higher dimensions in the framework of white noise analysis. We show that when a suitable number of kernel functions of self-intersection local times of mBm are truncated then we obtain a Hida distribution. In addition, we present the expansion of the self-intersection local times in terms of Wick powers of white noises. Moreover, we obtain the convergence of the regularized truncated self-intersection local times in the sense of Hida distributions.