Low-Power Wide-Area Network (LPWAN) technologies offer new opportunities for data collection, transmission, and decision-making optimization. Similarly, a wide range of use cases of computer vision and object detection algorithms can be found across different industries. This paper presents a case study focusing on the utilization of LPWAN infrastructure, specifically the Helium network, coupled with computer vision and object detection algorithms, to optimize passenger ferry operation. The passenger ferry called M/S Dessi operates between Kalmar and Färjestaden in Sweden during the summer season. By implementing an Edge-computing solution, real-time data collection and communication are achieved, enabling accurate measurement of passenger flow. This approach is superior to traditional methods of collecting passenger data, such as manual counting or CCTV surveillance. Real-time passenger data is invaluable for traffic planning, crowd prediction, revenue enhancement, and speed and fuel optimization. The utilization of the Helium network ensures reliable and long-distance data transmission, extending the system’s applicability to multiple ferries and distant locations. The proposed approach can be utilized to integrate passenger ferries that operate in close proximity to urban areas into society’s digital transformation efforts. This study highlights the potential of LPWAN, computer vision, and object detection in enhancing passenger ferry operations, contributing to enhanced efficiency and sustainability.