lnu.sePublications
Planned maintenance
A system upgrade is planned for 10/12-2024, at 12:00-13:00. During this time DiVA will be unavailable.
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Potential of single and designed mixed cultures to enhance the bioleaching of chalcopyrite by oxidation-reduction potential control
Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science. (Ctr Ecol & Evolut Microbial Model Syst EEMiS)
Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science. (Ctr Ecol & Evolut Microbial Model Syst EEMiS)ORCID iD: 0000-0003-2842-3315
Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science. (Ctr Ecol & Evolut Microbial Model Syst EEMiS)ORCID iD: 0000-0003-0021-2452
Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science. (Ctr Ecol & Evolut Microbial Model Syst EEMiS)
Show others and affiliations
2024 (English)In: Hydrometallurgy, ISSN 0304-386X, E-ISSN 1879-1158, Vol. 224, article id 106245Article in journal (Refereed) Published
Abstract [en]

Biomining is the extraction of target metals from ores or wastes such as the dissolution of chalcopyrite for copper recovery. A key outstanding topic of study is to improve the rate and total copper released from chalcopyrite that can become 'passivated' by surface layers, which hinders oxidative attack on the metal sulfide bond. One strategy to increase chalcopyrite bioleaching is to control of the oxidation-reduction potential in the desired range by using 'weak' iron oxidizers. In this study, 15 acidophilic species were evaluated for their ability to catalyze chalcopyrite dissolution that resulted in the addition of Acidithiobacillus ferrianus, Sulfobacillus thermotolerans, and Metallosphaera sedula to the known 'weak' iron oxidizing species. Based upon these data, four microbial consortia were designed including mesophiles (25 degrees and 37 degrees C), moderate thermophiles (49 degrees C), and thermophiles (70 degrees C) that increased copper recoveries by up to 32% compared to abiotic controls. The best performing consortium was the moderate thermophiles Sulfobacillus thermotolerans, Sulfobacillus acidophilus, and Ferroplasma acidiphilum that maintained the oxidation-reduction potential in the desired range. However, the consortia also showed evidence of synergistic interactions between 'weak' iron oxidizers that increased the efficiency of ferrous iron oxidation that resulted in oxidation-reduction potentials above the desired range and lower copper release. Therefore, while designing microbial consortia is a promising strategy to improve the performance of chalcopyrite bio-leaching, care must be taken to ensure synergistic effects do not result in high oxidation-reduction potentials.

Place, publisher, year, edition, pages
Elsevier, 2024. Vol. 224, article id 106245
Keywords [en]
Biomining, Copper, Passivation, Weak iron oxidizers, Redox potential
National Category
Geochemistry Microbiology
Research subject
Ecology, Microbiology
Identifiers
URN: urn:nbn:se:lnu:diva-127374DOI: 10.1016/j.hydromet.2023.106245ISI: 001138074900001Scopus ID: 2-s2.0-85179758206OAI: oai:DiVA.org:lnu-127374DiVA, id: diva2:1833588
Available from: 2024-02-01 Created: 2024-02-01 Last updated: 2024-11-14Bibliographically approved
In thesis
1. Investigating microbial communities for enhanced copper dissolution from chalcopyrite
Open this publication in new window or tab >>Investigating microbial communities for enhanced copper dissolution from chalcopyrite
2024 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Copper demand is rising such as in the construction industry, transportation including electric vehicles, and renewable energy. Mining and processing of copper is energy demanding and therefore, environmental concerns necessitate developing eco-friendly technologies to reduce its impact. Chalcopyrite is the most abundant and economically significant copper mineral in nature, although it is difficult and costly to process using traditional mining methodologies. Bioleaching, as one of the main biomining techniques, is a more sustainable alternative for processing ores such as chalcopyrite, though the ores refractory nature hinders copper extraction. Biofilms are also important to enhance bioleaching, improving metal solubilization and protecting the microbes from stresses such as extreme pH and high concentrations of heavy metals. Furthermore, Leptospirillum ferriphilum, commonly found in mining environments, is key to biofilm formation while its highly efficient iron oxidation creates elevated redox potentials that hinder copper extraction by passivating the ore surface. In this context, omics studies, such as genomics and proteomics, offer a valuable tool to understand interactions between acidophilic microorganisms and minerals, allowing optimization of bioleaching processes.

First, the performance of axenic acidophilic cultures were evaluated according to their ability to catalyze chalcopyrite dissolution and to control the redox potential within an ideal range (<680 mV). Based upon the axenic culture performances, four microbial consortia were designed that showed the best results was composed of moderate thermophiles. Then, the presence of L. ferriphilum in chalcopyrite bioleaching experiments was analyzed by epifluorescence microscopy and image analysis. Pre-colonization experiments with L. ferriphilum showed a slight improvement in copper recovery (4%) over 38 days although cell attachment to chalcopyrite and pyrite surfaces was not improved. Moreover, the consortium composed of Ferroplasma acidiphilum, Sulfobacillus thermosulfidooxidans, and ‘Fervidacidithiobacillus caldus’, showed higher mineral surface colonization indicating the existence of cooperative bioleaching followed by a non-contact mechanism. Finally, analysis of DNA and protein from the five tested consortia indicated some differences, probably because of the low cell density at the end of the experiments. In total, 11,173 proteins were identified and quantified, of which 9 and 10 were unique proteins associated with iron and sulfur metabolism.­ The findings of this thesis highlight that understanding microbial synergies is key to improving copper recovery from chalcopyrite in order to design more efficient strategies for its large-scale application.

Abstract [es]

La demanda de cobre va en aumento, sobre todo en el sector de la construcción, el transporte, incluidos los vehículos eléctricos, y las energías renovables. La extracción y el procesamiento del cobre exigen mucha energía, por lo que la preocupación por el medio ambiente obliga a desarrollar tecnologías más respetuosas con el medio ambiente para reducir su impacto. La calcopirita es el mineral de cobre más abundante y económicamente más importante de la naturaleza, pero su procesamiento resulta difícil y costoso con los métodos tradicionales de extracción. La biolixiviación, una de las principales técnicas de biominería, es una alternativa más sostenible para procesar minerales como la calcopirita, aunque su naturaleza refractaria dificulta la extracción del cobre. Las biofilms también son importantes para potenciar la biolixiviación, mejorando la solubilización de metales y protegiendo a los microorganismos de estrés como el pH extremo y las altas concentraciones de metales pesados. Además, Leptospirillum ferriphilum, especie que se encuentra comúnmente en entornos mineros, es clave para la formación de biofilms, pero, su alta capacidad de oxidación del hierro crea potenciales redox elevados que dificultan la extracción de cobre al pasivar la superficie del mineral. En este contexto, los estudios ómicos, como la genómica y la proteómica, ofrecen herramientas valiosas para comprender las interacciones entre los microorganismos acidófilos y los minerales, permitiendo optimizar los procesos de biolixiviación.

En primer lugar, se evaluó el desempaño de cultivos acidófilos axénicos en función de su capacidad para catalizar la disolución de calcopirita y controlar el potencial redox dentro de un rango ideal (<680 mV). Basándose en los resultados de los cultivos puros, se diseñaron cuatro consorcios microbianos, siendo el consorcio con mejores resultados el conformado por termófilos moderados. Posteriormente, se analizó la presencia de L. ferriphilum en experimentos de biolixiviación de calcopirita mediante microscopía de epifluorescencia y análisis de imagen. Los experimentos de pre-colonización con L. ferriphilum mostraron una leve mejora en la recuperación de cobre (4%) a lo largo de 38 días, aunque la adherencia celular a las superficies de calcopirita y pirita no mejoró. Además, el consorcio compuesto por Ferroplasma acidiphilum, Sulfobacillus thermosulfidooxidans, y ‘Fervidacidithiobacillus caldus’, mostró una mayor colonización de la superficie mineral indicando además la existencia de una biolixiviación cooperativa seguida de un mecanismo sin contacto. Por último, el análisis del ADN y proteínas de los cinco consorcios evaluados indicó algunas diferencias, probablemente debido a la baja densidad celular al final de los experimentos. En total, se identificaron y cuantificaron 11.173 proteínas, de las cuales 9 y 10 correspondieron a proteínas únicas asociadas al metabolismo del hierro y azufre. Los hallazgos de esta tesis enfatizan que la comprensión de las sinergias microbianas es clave para mejorar la extracción de cobre de la calcopirita con el objetivo de diseñar estrategias más eficientes para su aplicación a gran escala.

Place, publisher, year, edition, pages
Växjö: Linnaeus University Press, 2024. p. 59
Series
Linnaeus University Dissertations ; 548
Keywords
Acidophiles, Biomining, Redox potential, Chalcopyrite
National Category
Ecology Microbiology Environmental Sciences Metallurgy and Metallic Materials
Research subject
Natural Science, Environmental Science
Identifiers
urn:nbn:se:lnu:diva-133391 (URN)10.15626/LUD.548.2024 (DOI)9789180822190 (ISBN)9789180822206 (ISBN)
Public defence
2024-11-22, Lapis, Kalmar, 09:00 (English)
Opponent
Supervisors
Available from: 2024-11-14 Created: 2024-11-14 Last updated: 2024-11-20

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Rios, DanielaBellenberg, SörenChristel, StephanDopson, Mark

Search in DiVA

By author/editor
Rios, DanielaBellenberg, SörenChristel, StephanDopson, Mark
By organisation
Department of Biology and Environmental Science
In the same journal
Hydrometallurgy
GeochemistryMicrobiology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 70 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf