lnu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Inverting the sum of two singular matrices
Linnaeus University, Faculty of Technology, Department of Mathematics.ORCID iD: 0000-0003-1216-1672
Linnaeus University, Faculty of Technology, Department of Mathematics.ORCID iD: 0000-0002-0510-6782
(English)Manuscript (preprint) (Other academic)
Abstract [en]

Square matrices of the form à = A + eDf* are considered. An explicit expression for the inverse is given, provided à and D are invertible with rank(Ã) = rank(A) + rank(eDf*). The inverse is presented in two ways, one that uses singular value decomposition and another that depends directly on the components A, e, f and D. Additionally, a matrix determinant lemma for singular matrices follows from the derivations

National Category
Mathematics
Research subject
Mathematics, Mathematics
Identifiers
URN: urn:nbn:se:lnu:diva-130074DOI: 10.48550/arXiv.2403.16896OAI: oai:DiVA.org:lnu-130074DiVA, id: diva2:1866672
Available from: 2024-06-07 Created: 2024-06-07 Last updated: 2024-06-10Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Authority records

Eriksson, SofiaNordqvist, Jonas

Search in DiVA

By author/editor
Eriksson, SofiaNordqvist, Jonas
By organisation
Department of Mathematics
Mathematics

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 36 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf