lnu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Error estimates for semi-discrete finite element approximations for a moving boundary problem capturing the penetration of diffusants into rubber
Karlstad University, Sweden.ORCID iD: 0000-0002-6564-3598
Karlstad University, Sweden.ORCID iD: 0000-0002-3156-1420
Karlstad University, Sweden.ORCID iD: 0000-0002-1160-0007
2022 (English)In: International Journal of Numerical Analysis & Modeling, ISSN 1705-5105, Vol. 19, no 1, p. 101-125Article in journal (Refereed) Published
Abstract [en]

We consider a moving boundary problem with kinetic condition that describes the diffusion of solvent into rubber and study semi-discrete finite element approximations of the corresponding weak solutions. We report on both a priori and a posteriori error estimates for the mass concentration of the diffusants, and respectively, for the a priori unknown position of the moving boundary. Our working techniques include integral and energy-based estimates for a nonlinear parabolic problem posed in a transformed fixed domain combined with a suitable use of the interpolation-trace inequality to handle the interface terms. Numerical illustrations of our FEM approximations are within the experimental range and show good agreement with our theoretical investigation. This work is a preliminary investigation necessary before extending the current moving boundary modeling to account explicitly for the mechanics of hyperelastic rods to capture a directional swelling of the underlying elastomer.

Place, publisher, year, edition, pages
ISCI-INST SCIENTIFIC COMPUTING & INFORMATION , 2022. Vol. 19, no 1, p. 101-125
Keywords [en]
Moving boundary problem, finite element method, method of lines, a priori error estimate, a posteriori error estimate, diffusion of chemicals into rubber
National Category
Mathematics
Research subject
Mathematics
Identifiers
URN: urn:nbn:se:lnu:diva-134415ISI: 000767585800006Scopus ID: 2-s2.0-85128704007OAI: oai:DiVA.org:lnu-134415DiVA, id: diva2:1926290
Funder
Swedish Research Council, 2018-03648Knowledge Foundation, 2019-0213Available from: 2025-01-10 Created: 2025-01-10 Last updated: 2025-01-13Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

ScopusPublisher's full text

Authority records

Nepal, SurendraWondmagegne, YosiefMuntean, Adrian

Search in DiVA

By author/editor
Nepal, SurendraWondmagegne, YosiefMuntean, Adrian
In the same journal
International Journal of Numerical Analysis & Modeling
Mathematics

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 9 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf