lnu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Simulation of Deutsch-Jozsa Algorithm in Mathematica
Växjö University, Faculty of Mathematics/Science/Technology, School of Mathematics and Systems Engineering.
2007 (English)In: Quantum Theory: Reconsideration of Foundations - 4, Melville, New York , 2007, p. 312-315Conference paper, Published paper (Other academic)
Abstract [en]

This study examines the simulation of Deutsch-Jozsa algorithm in Mathematica. The program code implemented on a classical computer will be a straight connection between the mathematical formulation of quantum mechanics and computational methods in Mathematica. This program code will be a foundation of a universal simulation language.

Place, publisher, year, edition, pages
Melville, New York , 2007. p. 312-315
Keywords [en]
Deutsch-Jozsa algorithm, Mathematica, Quantum computing
Research subject
Natural Science, Mathematics
Identifiers
URN: urn:nbn:se:vxu:diva-3109OAI: oai:DiVA.org:vxu-3109DiVA, id: diva2:203065
Available from: 2008-01-07 Created: 2008-01-07 Last updated: 2011-08-18Bibliographically approved
In thesis
1. On relations between classical and quantum theories of information and probability
Open this publication in new window or tab >>On relations between classical and quantum theories of information and probability
2011 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

In this thesis we study quantum-like representation and simulation of quantum algorithms by using classical computers.The quantum--like representation algorithm (QLRA) was  introduced by A. Khrennikov (1997) to solve the ``inverse Born's rule problem'', i.e. to construct a representation of probabilistic data-- measured in any context of science-- and represent this data by a complex or more general probability amplitude which matches a generalization of Born's rule.The outcome from QLRA matches the formula of total probability with an additional trigonometric, hyperbolic or hyper-trigonometric interference term and this is in fact a generalization of the familiar formula of interference of probabilities.

We study representation of statistical data (of any origin) by a probability amplitude in a complex algebra and a Clifford algebra (algebra of hyperbolic numbers). The statistical data is collected from measurements of two dichotomous and trichotomous observables respectively. We see that only special statistical data (satisfying a number of nonlinear constraints) have a quantum--like representation.

We also study simulations of quantum computers on classical computers.Although it can not be denied that great progress have been made in quantum technologies, it is clear that there is still a huge gap between the creation of experimental quantum computers and realization of a quantum computer that can be used in applications. Therefore the simulation of quantum computations on classical computers became an important part in the attempt to cover this gap between the theoretical mathematical formulation of quantum mechanics and the realization of quantum computers. Of course, it can not be expected that quantum algorithms would help to solve NP problems for polynomial time on classical computers. However, this is not at all the aim of classical simulation.

 The second part of this thesis is devoted to adaptation of the Mathematica symbolic language to known quantum algorithms and corresponding simulations on classical computers. Concretely we represent Simon's algorithm, Deutsch-Josza algorithm, Shor's algorithm, Grover's algorithm and quantum error-correcting codes in the Mathematica symbolic language. We see that the same framework can be used for all these algorithms. This framework will contain the characteristic property of the symbolic language representation of quantum computing and it will be a straightforward matter to include future algorithms in this framework.

Place, publisher, year, edition, pages
Växjö, Kalmar: Linnaeus University Press, 2011. p. 161
Series
Linnaeus University Dissertations ; 60
Keywords
Born’s rule, Clifford algebra, Deutsch-Josza algorithm, Grover’s algorithm, Hyperbolic interferences, Inverse Born’s rule problem, Probabilistic data, Quantum computing, Quantum error-correcting, Quantum-like representation algorithm, Shor’s algorithm, Simon’s algorithm, Simulation of quantum algorithms
National Category
Mathematics
Research subject
Natural Science, Mathematics
Identifiers
urn:nbn:se:lnu:diva-13830 (URN)9789186491987 (ISBN)
Public defence
2011-09-22, Weber, Universitetsplatsen 1, Växjö, 14:15 (English)
Opponent
Supervisors
Available from: 2011-08-18 Created: 2011-08-18 Last updated: 2024-11-21Bibliographically approved

Open Access in DiVA

No full text in DiVA

Authority records

Nyman, Peter

Search in DiVA

By author/editor
Nyman, Peter
By organisation
School of Mathematics and Systems Engineering

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 197 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf