lnu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
On monomial pseudorandom number generators
Växjö University, Faculty of Mathematics/Science/Technology, School of Mathematics and Systems Engineering.
2006 (English)Report (Other academic)
Abstract [en]

The aim of this paper is to provide some results that

are useful when monomial dynamical systems are used for pseudorandom number generation. We prove that if we choose the seed to be a primitive root modulo $p^k$ then we get

the longest possible period of the random sequence modulo

$p^k$. An explicit expression for the length of the longest period is

also provided.

Place, publisher, year, edition, pages
2006. , p. 7
Series
Rapporter från MSI, ISSN 1650-2647 ; 06111
Keywords [en]
Pseudorandom numbers, monomial dynamics, p-adic numbers
Research subject
Natural Science, Mathematics
Identifiers
URN: urn:nbn:se:vxu:diva-4710OAI: oai:DiVA.org:vxu-4710DiVA, id: diva2:204668
Available from: 2006-08-07 Created: 2006-08-07 Last updated: 2010-03-10Bibliographically approved

Open Access in DiVA

No full text in DiVA

Authority records

Nilsson, Marcus

Search in DiVA

By author/editor
Nilsson, Marcus
By organisation
School of Mathematics and Systems Engineering

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 174 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf