lnu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Microbial loop in an oligotrophic pelagic marine ecosystem: Possible roles of cyanobacteria and nanoflagellates in the organic fluxes
Department of Microbiology, University of Umeå.
Show others and affiliations
1988 (English)In: Marine Ecology Progress Series, ISSN 0171-8630, E-ISSN 1616-1599, Vol. 49, p. 171-178Article in journal (Refereed) Published
Abstract [en]

In an attempt to quantify the organic fluxes within the microbial loop of oligotrophicMediterranean water, organic pools and production rates were monitored. The production of cyanobacteriaand its dynamics dominated the overall productivity in the system. The largest standing stock wasthat of the bacterioplankton and its growth consumed 8.3 pg C 1-' d-', hence about 60 % of the primaryproduction was required for bacterial growth. Using the MiniCap technique, we measured a predationon bacteria of 2 6 X 104 bacteria ml-' h-'. This was in good agreement with the bacterial production rateof 2.3 X 104 cells rnl-' h-' Thus, growth and predation were balanced for heterotrophic bacterioplankton.Almost all of this predation on bacteria was due to organisms passing a 12 vm Nuclepore filter. Thisraises the question of what mechanisms channel 60 % of primary production into bacteria. We thereforeoutlined a mass-balance model to illustrate routes that could explain this transfer. According to ourmodel the main flux route is cyanobacteria and concomitantly consumed heterotrophic bacteria carboninto bacterivores. A substantial fraction of the bacterivore and the microplankton carbon is released byexcretion and/or cell lysis, to be used by the heterotrophic bacterioplankton. About 86% of theautotrophic production is balanced by respiration due to heterotrophic bacteria and protozoa, leaving6 % of the primary production to higher trophic levels. This scenario should apply to ecosystems wherebacterial production rate is high and comparable to primary production, and the dominant primaryproducers are cyanobacteria. A significant fraction of the photosynthetically fixed carbon will bemineralized within a simple microbial loop, thus rendering it an energy sink in the foodweb.

Place, publisher, year, edition, pages
1988. Vol. 49, p. 171-178
National Category
Microbiology
Research subject
Natural Science, Microbiology
Identifiers
URN: urn:nbn:se:lnu:diva-517OAI: oai:DiVA.org:lnu-517DiVA, id: diva2:307247
Available from: 2010-04-01 Created: 2010-04-01 Last updated: 2017-12-12Bibliographically approved

Open Access in DiVA

No full text in DiVA

Authority records BETA

Hagström, Åke

Search in DiVA

By author/editor
Hagström, Åke
In the same journal
Marine Ecology Progress Series
Microbiology

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 277 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf