Bovine liver glutamate dehydrogenase has been studied by analytical affinity chromatography on two immobilized AMP analogs, i.e., N6-(6-aminohexyl)-AMP and 8-(6-aminohexyl)-amino-AMP. The existence of various enzyme-coenzyme and enzyme-effector complexes has been verified. Also the cooperative formation of two ternary complexes, i.e., glutamic dehydrogenase (GHD)-NADP-glutamate and GDH-ADP-leucine, has been shown. The results of this study have been rationalized by the “ligand exclusion theory.” which has been proposed for the regulation of the glutamic dehydrogenase. It has been shown that the active site and the ADP-binding effector site are oriented close to each other on the enzyme. Furthermore, the data suggest that the adenylic site is not identical to the nonactive coenzyme binding site. A mechanism based on electrostatic interactions is suggested for the cooperative binding of oxidized coenzyme and substrate. Dissociation constants for complexes between the enzyme and two coenzyme fragments (P-ADPR and 2′,5′-ADP) have been estimated.