lnu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Modeling of C IV pumped fluorescence of Fe II in symbiotic stars
University of Kalmar, School of Pure and Applied Natural Sciences.
University of Kalmar, School of Pure and Applied Natural Sciences.
2008 (English)In: Astronomy and Astrophysics, ISSN 0004-6361, E-ISSN 1432-0746, Vol. 477, no 1, p. 255-265Article in journal (Refereed) Published
Abstract [en]

Aims. We describe how the C IV lambda 1548.18 line pumps the 1548.20 and 1548.41 angstrom channels of Fe II in symbiotic stars through the process known as photo-ionization by accidental resonance (PAR). We describe where and why Fe II fluorescence arises in symbiotic stars and whether the Fe II lambda 1548.41 channel can only be activated when there is a white-dwarf wind present in the system. Further, we aim to show how an analysis of the PAR-pumped lines helps to understand the phyisical conditions that they manifest. Methods. We calculate intensities of the C IV-pumped Fe II fluorescence lines in symbiotic stars, corresponding to the y(4)H(11/)2 and w(2)D(3/2) levels, based on a simple geometrical model of the emitting regions. We apply the model to seven symbiotic stars, known to have Fe II fluorescence lines pumped by C IV in their spectra. We compare the predicted intensities to the observed intensities of the selected symbiotic stars. Results. We find that we can reproduce the observed fluorescence intensities of the seven symbiotic stars in our sample, using parameters that are consistent with their known properties. We show that PAR-produced lines can be used as a diagnostic tool to derive important physical parameters of a stellar system. We suggest that the detection of Fe II lines corresponding to the w2D3/2 level in certain symbiotic stars provide evidence of hot shells expanding with velocities of at least hundreds km s(-1) in those systems.

Place, publisher, year, edition, pages
2008. Vol. 477, no 1, p. 255-265
National Category
Physical Sciences
Research subject
Natural Science, Physics
Identifiers
URN: urn:nbn:se:lnu:diva-1604DOI: 10.1051/0004-6361:20078420OAI: oai:DiVA.org:lnu-1604DiVA, id: diva2:308650
Available from: 2010-04-06 Created: 2010-04-06 Last updated: 2017-12-12Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Authority records BETA

Veenhuizen, Hans

Search in DiVA

By author/editor
Veenhuizen, Hans
By organisation
School of Pure and Applied Natural Sciences
In the same journal
Astronomy and Astrophysics
Physical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 110 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf