lnu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Mobility of trace elements in black shale assessed by leaching tests and sequential chemical extraction
University of Kalmar, School of Pure and Applied Natural Sciences.
University of Kalmar, School of Pure and Applied Natural Sciences.ORCID iD: 0000-0002-3585-2209
University of Kalmar, School of Pure and Applied Natural Sciences.
2009 (English)In: Geochemistry: Exploration, Environment, Analysis, ISSN 1467-7873, E-ISSN 2041-4943, Vol. 9, p. 71-79Article in journal (Refereed) Published
Abstract [en]

This study focuses on the abundance and mobility of Ca, Fe, S and trace elements (As, Cd, Co, Cr, Cu, Mn, Mo, Ni, Pb, U, V and Zn) in black shale (alum shale) in SE, Sweden. Samples of non-weathered, weathered and burnt black shale were chemically characterized and the potential element release from them was assessed by standard water-based leaching tests and pH/redox-regulated availability tests. Sequential chemical extractions provided further information on the phases in which the elements are bound. Results show that the shale is very rich in As (88-122 ppm), Cd (0.4-4.6 ppm), Mo (61-176 ppm), U (27-71 ppm) and V (496-1560 ppm). Cadmium and Mo, bound mainly in sulphides or organic matter, are very mobile in the non-burnt shale, with mobilization rates of up to 19% (190 mu g/kg) and 25% (16 mg/kg), respectively, using only water as extraction medium. The non-weathered shale is also relatively rich in Cu (113 ppm), Ni (100 ppm) and Zn (304 ppm), the latter two in particular showing behaviour similar to that of Cd, but with lower mobilization rates. In all samples U and V arc found mainly in weathering-resistant mineral phases and thus have a lower mobility, but due to the high abundance in the material, significant amounts of U can be released on longer time scales (up to 6 mg/kg, as indicated by the pH/redox-regulated test). Less than 1% of the As is released in all the leaching tests, indicating that upon oxidation it is retained in the solid phase. The overall conclusion is that this material has a high potential for releasing Cd, Mo, Ni, U and Zn (luring weathering.

Place, publisher, year, edition, pages
2009. Vol. 9, p. 71-79
National Category
Environmental Sciences
Research subject
Environmental Science, Environmental Chemistry
Identifiers
URN: urn:nbn:se:lnu:diva-1959DOI: 10.1144/1467-7873/08-188OAI: oai:DiVA.org:lnu-1959DiVA, id: diva2:309007
Available from: 2010-04-06 Created: 2010-04-06 Last updated: 2017-12-12Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Authority records

Lavergren, UlfÅström, Mats E.Bergbäck, Bo

Search in DiVA

By author/editor
Lavergren, UlfÅström, Mats E.Bergbäck, Bo
By organisation
School of Pure and Applied Natural Sciences
In the same journal
Geochemistry: Exploration, Environment, Analysis
Environmental Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 328 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf