lnu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Trace metals in recharge and discharge ground waters at two sites at the Baltic coast of Sweden
University of Kalmar, School of Pure and Applied Natural Sciences.
University of Kalmar, School of Pure and Applied Natural Sciences.
University of Kalmar, School of Pure and Applied Natural Sciences.ORCID iD: 0000-0002-3585-2209
2009 (English)In: Applied Geochemistry, ISSN 0883-2927, E-ISSN 1872-9134, Vol. 24, no 9, p. 1640-1652Article in journal (Refereed) Published
Abstract [en]

The distribution and controls of trace elements (Cd, Cr, Cu, Ni, Pb, Zn and U) in shallow groundwater in discharge and recharge zones were analysed at two sites on the Baltic coast of Sweden; one granite-dominated and one with a significant addition of calcite. Although the study sites differ in overburden geochemistry and groundwater trace metal concentrations, which were well reflected in the general groundwater composition, the relative hydrochemical differences between recharge and discharge ground waters were similar at both sites, and temporally stable. The concentrations of Cd, Cu, Ni and U were higher in soil tubes in recharge areas, but Cr was higher in discharge zones. Also concentrations of HS, Fe, Mn and NH4 were higher in discharge samples, which in combination with increased 34S values provide strong evidence of a transition from oxidizing to more reducing conditions along the groundwater flow gradient. In terms of trace metals, this might mean either mobilisation due to dissolution of trace-metal carrying Fe(III) and Mn(IV) phases, or immobilisation caused by precipitation of discrete trace-metal sulfides or co-precipitation with Fe sulfides. The results from this study show that the latter is dominant in both the carbonate and granite environments for the metals Cd, Cu and Ni. Chromium concentrations were likely coupled to organic complexation and were higher in discharge groundwater, where DOC was also more abundant. As the concentration of several potentially toxic trace metals were found to differ between recharge and discharge areas, a climate driven change in hydrology might have a substantial impact on the distribution of these metals.

Place, publisher, year, edition, pages
2009. Vol. 24, no 9, p. 1640-1652
Research subject
Environmental Science, Environmental Chemistry; Natural Science, Environmental Science
Identifiers
URN: urn:nbn:se:lnu:diva-2002DOI: 10.1016/j.apgeochem.2009.04.028OAI: oai:DiVA.org:lnu-2002DiVA, id: diva2:309050
Available from: 2010-04-06 Created: 2010-04-06 Last updated: 2017-12-12Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textLänktext

Authority records BETA

Augustsson, AnnaBergbäck, BoÅström, Mats E.

Search in DiVA

By author/editor
Augustsson, AnnaBergbäck, BoÅström, Mats E.
By organisation
School of Pure and Applied Natural Sciences
In the same journal
Applied Geochemistry

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 147 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf