lnu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Carbon isotope signature variability among cultured microalgae: Influence of species, nutrients and growth
University of Kalmar, School of Pure and Applied Natural Sciences.
University of Kalmar, School of Pure and Applied Natural Sciences.
University of Kalmar, School of Pure and Applied Natural Sciences. (MPEA)
2009 (English)In: Journal of Experimental Marine Biology and Ecology, ISSN 0022-0981, E-ISSN 1879-1697, Vol. 372, no 1-2, p. 98-105Article in journal (Refereed) Published
Abstract [en]

In this study we have investigated whether the carbon isotopic signature differs between different groups and species of marine phytoplankton depending on growth phase, nutrient conditions and salinity. The 15 investigated algal species, representing the Bacillariophyceae, Chlorophyceae, Cryptophyceae, Cyanophyceae, Dinophyceae and Haptophyceae classes were grown in batch monocultures and analysed for delta(13)C in both exponential and stationary phase. For all the cultured species, delta(13)C signatures ranged from -23.5 parts per thousand (Imantonia sp.) to - 12.3 parts per thousand (Nodulania spumigena) in the exponential phase and from - 18.8 parts per thousand (Amphidinium carterae) to - 8.0 parts per thousand (Anabaena lemmermannii) in the stationary phase. Three species (Dunaliella tertiolecta, Rhodomonas sp.. Heterocapsa triquetra) were also grown under nutrient sufficient and nitrogen or phosphorus deficient conditions. Nitrogen limitation resulted in a more negative delta(13)C signature, whereas no effect could be observed during phosphorus limitation compared to nutrient sufficient conditions. Growth of Prymnesium parvum in two different salinities resulted in a more negative delta(13)C signature in the 26 parts per thousand-media compared to growth in 7 parts per thousand-media. Our results show that the carbon isotopic signature of phytoplankton may be affected by salinity, differ among different phytoplankton species, between exponential and stationary phase, as well as between nutrient treatments.

Place, publisher, year, edition, pages
2009. Vol. 372, no 1-2, p. 98-105
National Category
Ecology
Research subject
Natural Science, Aquatic Ecology
Identifiers
URN: urn:nbn:se:lnu:diva-2161DOI: 10.1016/j.jembe.2009.02.013OAI: oai:DiVA.org:lnu-2161DiVA, id: diva2:309211
Available from: 2010-04-06 Created: 2010-04-06 Last updated: 2017-12-12Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textLänktext

Authority records BETA

Brutemark, AndreasLindehoff, ElinGranéli, Edna

Search in DiVA

By author/editor
Brutemark, AndreasLindehoff, ElinGranéli, Edna
By organisation
School of Pure and Applied Natural Sciences
In the same journal
Journal of Experimental Marine Biology and Ecology
Ecology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 105 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf